Блок управления вентилятором охлаждения двигателя своими руками - АвтоКлуб Toyota
Toyota-navi.ru

АвтоКлуб Toyota
4 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Блок управления вентилятором охлаждения двигателя своими руками

Т Е Р М О С Т А Т

Электронный блок управления электровентилятором системы охлаждения двигателя.

Возможность регулировки температуры включения позволит вам самостоятельно установить максимальную температуру двигателя — не зависимо от параметров штатного датчика включения вентилятора или параметров запрограммированных в компьютере вашего автомобиля.

Дополнительные возможности

Это устройство может управлять стандартным авто-реле и коммутировать нагрузку до 30А включая и выключая ее при определенной температуре датчика. Вы можете использовать его для управления дополнительными сигнализаторами — например о температуре масла турбодвигателей либо температуры в АКПП. Если вам надо поддерживать температуру до 40 градусов — установите резистор R11 (принципиальная схема устройства) на 100кОм.

Вам надо собрать вот такую схему:

Как это работает?

На большинстве автомобилей (отечественных и зарубежных) в качестве датчика указателя температуры двигателя применяют терморезистор с уменьшающимся при возрастании температуры сопротивлением — чем горячее двигатель тем меньшее сопротивление имеет датчик. Соответственно (при неизменном напряжении в сети автомобиля) напряжение на датчике более высокое при холодном моторе — понижается при нагреве мотора. Аналогично ведет себя и напряжение на датчике.

Указатель температуры в комбинации приборов показывает отношение напряжения на датчике температуры к напряжению в бортовой сети автомобиля. Если мы хотим включить электровентилятор при определенной температуре двигателя — то нам нужно устройство переключающее контакты реле при определенном соотношении напряжения на датчике температуры к напряжению в сети автомобиля. Именно это и делает предлагаемое устройство.

Напряжение с датчика поступает в блок через фильтр низких частот R2 C1 (см. принципиальную схему) на инвертирующий вход «-» первого операционного усилителя (ОУ1). Если температура двигателя не достигла установленной точки включения реле (устанавливается изменением положения движка резистора R2. положение «ниже» соответствует более высокой температуре включения реле) то потенциал на входе «-» выше чем потенциал на не инвертирующем входе «+» ОУ1 и на выходе ОУ1 имеется низкий уровень — такой же уровень и на входе ОУ2 и на его выходе — поэтому транзистор закрыт и реле обесточено.

Принцип работы ОУ в том, что он сравнивает потенциал на входах «+» и «-» и если (V+) > (V-) на выходе будет высокий уровень а если неравенство направлено в другую сторону то на выходе потенциал близок к уровню «земли».

При повышении температуры датчика выше точки установленной вами для включения вентиляции, потенциалы на входах ОУ1 сравниваются и на выходе генерируется типа ШИМ сигнал — т.е. сигнал с определенным соотношением времени низкого уровня и высокого уровня — этот сигнал интегрируется цепочкой R5 C2 и когда напряжение на C2 достигнет примерно 2/3 напряжения питания (такой потенциал на входе «-» ОУ2 благодаря резисторам R6-R8) ОУ2 переключится и на его выходе возникнет высокий уровень транзистор откроется и реле включится. При открытии транзистора на входе «-» ОУ2 потенциал скачком уменьшиться примерно до 1/3 напряжения питания — это задает минимально возможное время переключений реле — равно оно времени изменения напряжения С2 на 1/3 напряжения питания и определяется примерно так С2*R5 секунд. Благодаря этому не происходит бесконечного переключения реле (опасного выгоранием его контактов) несмотря на довольно медленно меняющуюся температуру двигателя.

По мере снижения температуры мотора скважность ШИМ сигнала будет уменьшаться и С2 будет разряжаться — когда потенциал на нем опуститься ниже 1/3 напряжения питания ОУ 2 переключиться в свое исходное состояние и реле выключиться.

Этот процесс периодически повторяется — каждый раз когда температура двигателя достигает установленного вами предельного уровня и затем благополучно опускается благодаря вовремя включенному вентилятору.

При показанных на схеме номиналах элементов и учитывая инертность системы охлаждения мотора — время работы вентилятора составляет примерно 40 секунд на автомобиле ГАЗ-3110 с 406 двигателем.

Устройство достаточно надежно благодаря следующим конструктивным особенностям — R10, С3 и С4 — образуют фильтр от помех по питанию, а диод D1 делает безопасным ошибочное подключение устройства обратной полярностью. Короткого замыкания вывода Х3 на «землю» устройство не боится, а если вы опасаетесь замыкания на «+» (это очень мало вероятно) то можете в разрыв провода идущего от точки Х3 вмонтировать резистор на 10 — 15 ом 0,5 вт — он защитит транзистор от короткого замыкания в цепи включения реле ограничивая максимальный ток через него.

Принципиальная схема устройства

Печатная плата устройства (крупный план)

Блок смонтирован в металлическом корпусе автомобильного реле РС508. Имеет два вывода длиной около 20 см и провод (от Х1) для подключения к датчику длиной 0,7 м. Корпус имеет ушко для крепления.

Регулировочный винт подстроечного резистора установки температуры срабатывания — доступен снаружи.

Размещение компонентов на плате:

Электронные компоненты

Микросхема: LF442CN или ACN — сдвоенный операционный усилитель с полевым входом и напряжением питания от 6 до 40 вольт.

Транзистор я использую КТ815Г, подойдут с буквами Б и В, можно применить КТ817Б2 или Г2 у них коэффициент усиления не менее 100. Ниже есть рисунок с расположением выводов транзистора.

Диоды — обычно применяют КД105 и КД522Б но в принципе любой подойдет средней мощности на ток 0.2 и более ампер и напряжение 60 и более вольт.

Постоянные резисторы — для уменьшения размеров, я применил «чип-резисторы» на 0.125 вт.

Резисторы R6 R7 R8 — могут иметь номинал от 5 ком до 2 мОм — главное чтобы они были одинакового номинала.

R2 — 10 кОм — я использовал многооборотный подстроечник с гибкими выводами типа СП5-3. Многооборотным удобней настраивать температуру включения (можно использовать номинал от 2.2 ком до 22 ком).

Конденсаторы малогабаритные либо «чипы».

Внимание! Устройство собирается и испытано с компонентами указанными на схеме. Я не проверял работу устройства с другими номиналами элементов — хотя это вполне возможно.

Подключение и Настройка

Когда все спаяно и припаяны выводы (лучше по цвету штатной проводки автомобиля) — обязательно промойте плату кистью с ацетоном или растворителем от остатков флюса. Покройте нитро-лаком или силиконом.

Поставьте движок подстроечника R1 в среднее положение. Поместите устройство в корпус. Подключите провода согласно схеме.

Читать еще:  Что будет если в бензиновый двигатель налить солярки

Обратите внимание, что авто-стандартом является: черные провода подключаются к «массе» автомобиля. Обычно реле вентилятора включено так как указано на схеме устройства. «85» это вывод обмотки реле подключенный к плюсу питания при включенном зажигании, «86» это второй конец обмотки реле и если его замкнуть на «массу» по обмотке потечет ток и контакт «30» реле переключится с «87» на «88». При этом включается нагрузка последовательно которой включены контакты «30» и «88». На четырех контактных реле контакт «87» отсутствует. Вам нужно отыскать реле включения вентилятора своего автомобиля и посмотреть на нумерацию его выводов. Если ни к «85» ни к «86» контактам не подходят черные провода — значит ваше реле включено «как надо» т.е. по схеме устройства.

Для автомобиля ГАЗ-3110 и для большинства других машин с которыми я имел дело — температуре двигателя в 90 градусов соответствует напряжение на датчике равное примерно половине напряжения сети автомобиля — однако есть небольшие отличия. Подключив устройство (снимите временно провод со штатного датчика включения вентилятора — если он имеется) заведите мотор и подождите пока он прогреется. Если устройство сработает раньше желаемой вами температуры то поверните винт регулировки по часовой стрелке на один оборот (переместите движок подстроечника вниз по схеме) и подождите следующего включения вентилятора. Если температура достаточно высока, а вентилятор не включился — поверните винт регулировки на два оборота против часовой стрелки и подождите не менее 30 секунд, повторите эти операции до достижения желаемой температуры срабатывания реле.

Замечание: Устройство позволяет установить практически любую температуру срабатывания — но при размещении датчика на двигателе температура должна быть выше температуры открытия клапана термостата! В противном случае вентилятор включиться но не сможет выключиться так как термостат не даст мотору охладится ниже определенной температуры.

Если ваш автомобиль имеет реле включения электровентилятора — то Вы можете просто подключить контакты Х2 и Х3 к штатному реле в соответствии со схемой. Если Вы затрудняетесь в определении как правильно подключить устройство — то вы можете использовать дополнительно любое авто-реле а его нормально-разомкнутые контакты подключить к контактам штатного датчика включения вентилятора либо параллельно силовым контактам штатного реле включения электровентилятора.

Принцип работы

Таким образом, рабочая температура двигателя на малых скоростях и в летних пробках фактически не превышает 90-92 o C, за исключением конечно аномальной летней жары. За 9 месяцев работы контроллера (с апреля по декабрь) и 15 000 км пробега, на моём ВАЗ 2110 1.6 16V (+ГБО) двигатель ни разу не нагревался больше 95 o C, и соответственно ни разу не сработала штатная система охлаждения.

Радио-как хобби

Система автоматического управления вентилятором своими руками.

Часто в радиолюбительской практике возникает необходимость охлаждать методом обдува какие-либо мощные активные элементы: регулирующие транзисторы в блоках питания, в выходных каскадах мощных УНЧ, радиолампы в выходных каскадах передатчиков и т.д.

Конечно, проще всего включить вентилятор на полные обороты. Но это не самый лучший выход-шум вентилятора будет напрягать и мешать.

Система автоматического управления вентилятором-вот что может быть выходом из ситуации.

Такая система автоматического управления вентилятором, будет управлять включением/выключением и оборотами вентилятора в зависимости от температуры.

В данной статье предложен простой, бюджетный выход из ситуации…

Итак, некоторое время тому назад знакомый товарищ попросил изготовить ему систему автоматического регулирования оборотов вентилятора охлаждения для зарядного устройства. Поскольку готового решения у меня не было-пришлось поискать что-либо подходящее в интернете.

Всегда руководствуюсь принципом –«делать жизнь как можно проще», поэтому подыскивал схемы попроще, без всяких там микроконтроллеров, которые сейчас суют где надо, и где не надо. Попалась на глаза статья :http://dl2kq.de/pa/1-11.htm. Решено было испытать описанные в ней автоматы управления вентилятором…

Система автоматического управления вентилятором №1.

Принципиальная схема устройства показана ниже:

В данном случае применен вентилятор с рабочим напряжением 12 В.

Схема питается напряжением 15…18 В. Интегральный стабилизатор типа 7805 задает начальное напряжение на вентиляторе. Транзистор VT1 управляет работой интегрального стабилизатора. В качестве датчиков температуры использованы кремниевые транзисторы (VT2 и VT3) в диодном включении.

Схема работает следующим образом: в холодном состоянии датчиков температуры напряжение на них максимально. Транзистор VT1 полностью открыт, напряжение на его коллекторе ( а значит и на выводе 2 интегрального стабилизатора) составляет десятые доли вольта. Напряжение, подаваемое на вентилятор почти равно паспортному выходному напряжению микросхемы LM7805, и вентилятор вращается на небольших оборотах.

По мере прогрева датчиков температуры ( одного любого из них, или обеих) напряжение на базе VT1 начинает уменьшаться. Транзистор VT1 начинает закрываться, напряжение на его коллекторе увеличивается, а соответственно, увеличивается и напряжение на выходе микросхемы LM7805.

Обороты вентилятора также увеличиваются и плавно достигают максимальных. По мере остывания датчиков температуры происходит обратный процесс и обороты вентилятора уменьшаются.

Количество датчиков может быть от одного до нескольких ( мною опробовано три параллельно включенных датчика). Датчики могут быть установлены как рядом друг с другом ( для повышения надежности срабатывания), так и размещены в разных местах.

Изначально данная схема разрабатывалась для применения в мощном ламповом усилителе мощности КВ диапазона, отсюда большое количество блокировочных конденсаторов. При применении данной системы автоматического управления режимом работы вентилятора, скажем, в блоках питания, или в мощных усилителях НЧ блокировочные конденсаторы можно не устанавливать.

Данная схема интересна еще и тем, что датчики температуры могут быть как закреплены на радиаторах мощных транзисторов, диодов и иметь непосредственный тепловой контакт с ними,так и установлены на весу, в потоке теплого воздуха.

В качестве транзисторов VT1…VT3 можно применить любые кремниевые транзисторы в пластиковом корпусе и структуры n-p-n. Мною успешно испытаны транзисторы КТ503, КТ315, КТ3102, S9013, 2N3904. Подстроечный резистор R2 служит для установки минимальных оборотов вентилятора.

При настройке данной системы автоматического управления режимом работы вентилятора подстроечным резистором R2 устанавливают минимальные обороты вентилятора. Затем, нагревая датчик, или датчики, каким-либо источником тепла убеждаются в работоспособности системы и возможность срабатывания её от разных датчиков независимо.

Данная схема достаточно чувствительна-можно настроить её на срабатывание даже от нагевания датчика температуры рукой. Важное замечание. Схема измеряет не абсолютную температуру, а разность температур между переходами транзистора VT1 и датчиков VT2 и VT3. Поэтому плата устройства должна быть размещена в месте, исключающем дополнительный нагрев. Интегральный стабилизатор должен быть снабжен небольшим радиатором.

Читать еще:  Форд фокус на холодную громко работает двигатель

Система автоматического управления вентилятором №2.

Здесь описано аналогичное устройство, но имеющее некоторые особенности.

Дело вот в чем. Часто бывают случаи, когда система автоматического управления режимом работы вентилятора установлена в изделии, где имеется всего лишь одно питающее напряжение -12В, но и вентилятор рассчитан на работу от напряжения 12 В.

Для достижения максимальных оборотов вентилятора необходимо подать на него полное напряжение,или, другими словами, регулирующий элемент системы автоматического управления режимом работы вентилятора должен иметь практически близкое к нулю падение напряжения на нем. И в этом смысле схема, описание которой изложено выше, не подходит.

В этом случае применимо другое устройство, схема которого представлена ниже:

Регулирующим элементом служит полевой транзистор с очень низким сопротивлением канала в открытом состоянии. Мною использован транзистор типа PHD55N03.

Он имеет следующие характеристики: максимальное напряжение сток-исток -25 В, максимальный ток стока- 55 А, сопротивлением канала в открытом состоянии -0,14 мОм.

Подобные транзисторы применяются на материнских платах и платах видеокарт. Я добыл этот транзистор на старой материнской плате:

Цоколевка этого транзистора:

Именно очень низкое сопротивление канала в открытом состоянии и позволяет приложить к вентилятору практически полное напряжение питания.

В этой схеме датчиком температуры служит терморезистор R1 номиналом 10 кОм. Терморезистор должен быть с отрицательным температурным коэффициентом сопротивления ( типа NTC).

Номинал терморезистора R1 может быть от 10 до 100 кОм, соответственно нужно изменить и номинал подстроечного резистора R2. Так, для терморезистора номиналом 100 кОм, сопротивление подстроечного резистора R2 должно быть 51 или 68 кОм. Подстроечным резистором R2 в данной схеме устанавливается порог срабатывания схемы.

Данная схема работает по принципу термоуправляемого реле: вентилятор включен/выключен в зависимости от температуры датчика.

Конструктивно, терморезистор R1 размещается на радиаторе транзисторов, которые обдувает вентилятор. Подстроечным резистором R2 при настройке схемы добиваются старта вентилятора при пороговой (начальной) температуре.

В качестве VT1 подойдет любой полевой транзистор с напряжением стока выше 20 В и сопротивлением канала в открытом состоянии менее 0,5 Ома.

Если напряжение питания не стабилизировано, то порог срабатывания схемы будет плавать, со всеми вытекающими последствиями. В этом случае полезно будет запитать терморезистор от стабильного источника питания, например -78L09.

Ниже приведен модернизированный вариант этой схемы. В данной схеме предусмотрена возможность независимой регулировки как минимальных оборотов при нормальной температуре, так и температуру, с которой обороты вентилятора начинают увеличиваться.

Здесь цепь R5, R6,VD2 позволяет установить минимальные обороты вентилятора при нормальной ( начальной) температуре при помощи подстроечного резистора R5. А резистором R7 устанавливают температуру, с которой вентилятор переходит на повышенные обороты.

Как и в предыдущих схемах, блокировочные конденсаторы необходимы при эксплуатации устройства в условиях воздействия мощных высокочастотных наводок-например ламповый усилитель мощности КВ диапазона. В других случаях в их установке нет необходимости.

Терморезисторов-датчиков температуры может быть несколько и установленных в разных местах. Вентиляторов тоже может быть несколько. В этом случае возможно ( но необязательно) будет необходимым предусмотреть небольшой радиатор для регулирующего транзистора.

Вид собранной платы системы автоматического управления обдувом, управляющий транзистор установлен со стороны печатных проводников:

Печатная плата, вид со стороны проводящих дорожек:

Все три схемы, приведенные в этой статье мною опробованы и продемонстрировали надежную и стабильную работу.

Обновление от 13.01.2020

Изготовил еще два варианта подобных регуляторов. Без использования терморезисторов.

Статья с подробным описанием здесь.

Дополнение от 19.02.2020.

Проделал лабораторную работу с целью определения возможности работы термоуправляемого регулятора, собранного по схеме №2 (см. текст статьи), от напряжения +27 В вместо штатных +12 В.

Делать эту работу пришлось, так как у некоторых коллег что-то там не получается и работает наоборот, и вовсе не так…

Схему собрал упрощенную-всего три детали. В качестве регулирующего транзистора применил IRF630.

Схема получилась такая:

В качестве нагрузки использован 27-ми вольтовый электродвигатель ДП25-1,6-3-27.

Всё заработало сразу, и как положено-при нагреве терморезистора двигатель начинает вращаться, при охлаждении останавливается. Порог срабатывания устанавливается подстроечным резистором 10 кОм. Причем, можно выставить так, что схема будет срабатывать даже от нагрева терморезистора дыханием.

Форма поиска

При нагреве тосола в радиаторе до определенной температуры датчики бывают разные, но, в среднем, это 92 градуса , внутри датчика замыкаются контакты и напряжение подается на реле включения вентилятора. Свет в помещении и вентилятор работают параллельно, т.

Еще статьи из рубрики Теория. Один устанавливается на выходе из радиатора, а другой на входе. Я так понимаю они друг друга дублируют?

Да и резкое включение вентилятора радиатора хочется как то сгладить : Решение вопроса есть и даже не одно!

Рассмотрим момент работы вентилятора радиатора более детально: Истории наших читателей «Гребаный таз. Всем привет!

Муфта может быть блокирована силиконовой жидкостью, которая находится внутри неё. Схема применяется на авто с двумя вентиляторами. Конечно, тут возможно врет приборная панель и по Бортовому Компьютеру показания совсем другие.

Когда произойдет нужное изменение содержимого муфты, она будет опять таки блокирована, и механизм охлаждения запустится автоматически. Датчик ТМ работает только в паре с реле, усиленный под большой ток ТМ может работать как с реле, так и без него. Будете смеяться, но работаю прямо на телефоне Если ты хочешь изменить свою жизнь как я, то вот что советую сделать прямо сейчас: 1. При нагреве тосола в радиаторе до определенной температуры датчики бывают разные, но, в среднем, это 92 градуса , внутри датчика замыкаются контакты и напряжение подается на реле включения вентилятора.

Не включается вентилятор.

На контактах реле 87, 30, на проводе от аккумулятора к предохранителю и массе вентилятора будет большой ток и по этому там обязательно используем провода, сечением не менее 2 мм иначе более тонкий провод не выдержит и сгорит. Для подключения вам достаточно понимания принципа работы 4-контактного реле и минимальных знаний в монтаже дополнительного оборудования. Сообщений Да, и судя по фишкам как указано в схеме в моём букваре так и есть. Как сделать такую систему?

Читать еще:  Глохнет двигатель после запуска на фокусе 2

Рассмотрим момент работы вентилятора радиатора более детально: Истории наших читателей «Гребаный таз. Он чисто механический, то есть, никакой электроники внутри нет.
Схема включения электро вентилятора охлаждения радиатора автомобиля

Описание работы схемы управления вентилятором

Когда температура низкая, сопротивление термистора высокое и, следовательно, первый транзистор закрыт, потому что на его базе напряжение ниже 0,6 вольт. В это время конденсатор на 100 мкФ разряжен. Второй PNP-транзистор так же закрыт, поскольку напряжение на базе равно напряжению на его эмиттере. И третий транзистор так же заперт.

При повышении температуры, сопротивление термистора уменьшается. Таким образом, напряжение на базе первого транзистора увеличивается. Когда это напряжение превысит 0,6 В, первый транзистор начинает пропускать ток заряжая конденсатор 100 мкФ и подает отрицательный потенциал на базу второго транзистора, который открывается и включает третий транзистор, который в свою очередь активирует реле.

После того, как вентилятор включается, температура уменьшается, но конденсатор 100 мкФ разряжается постепенно, сохраняя работу вентилятора в течение некоторого времени после того, как температура приходит в норму.

Подстроичный резистор (показан на схеме как 10 ком) должен иметь значение сопротивления около 10% от сопротивления термистора при 25 градусах. Термистор применен марки EPCOS NTC B57164K104J на 100 кОм. Таким образом, сопротивление подстрочного резистора (10%) получается 10 кОм. Если вы не можете найти эту модель можно использовать другой. Например, при использовании термистора 470 кОм сопротивление подстроичного составит 47 кОм.

Плавное управление вентилятором охлаждения двигателя — Лада 21099, 1.5 л., 1994 года на DRIVE2

После установки вентилятора от калины, не нравилось резкое включение вентилятора, когда стоишь в пробке. Резкий провал, обороты падают и восстанавливаются. Подключение через резистор, не дал желаемого результата, но провалы чуть снизились, в салоне все равно было слышно что работает вентилятор.

Пару месяцев назад, на драйве увидел несколько тем по поводу плавного включения вентилятора. Плавного включения вентилятора мне оказалось мало, поэтому поискав информацию, нашел нужный мне вариант. Изначально наткнулся на готовое решение Смерч. Но потом увидел статью в бж драйвовчанина seamen73 с его статьей Контроллер электровентилятора охлаждения двигателя на pic12f675 было принято решение изготовить устройство по его схеме. Хотя в принципе, схема от Смерч почти такая же. Прошивка для PIC12f675 используется от Смерча.

Перед работой над печатной платой, была проблема найти корпус. Заехал в магазин запчастей, и купил довольно интересный корпус (влагозащищенный) модуль ЭПХХ (от какого авто неизвестно).

Фото корпуса и оригинальной платы в нем.

Плату развел под этот корпус. Разъем впаивается в плату. Все получилось компактно.

При проверке устройства, оно не заработало. После некоторого проведенного времени, выяснил, что неисправен мк. Купил новый мк, прошил, заработало. Очень понравилась настройка включения вентилятора. Надо прогреть авто до температуры срабатывания вентилятора, и крутить подстроечный резистор до сработки вентилятора управляемого новым устройством.

Установил в подкапотное пространство:

Очень доволен устройством. Сейчас, он включается практически не слышно (правда на самых малых оборотах происходит гул обмотки эл.вентилятора). Если этот гул отсутствовал на малых оборотах, то это устройство считал бы идеальным. На максимум вентилятор не включался ниразу, обороты при включении не плавают. Если это устройство выйдет из строя, то автоматически при достижении нужной температуры, сработает штатная система охлаждения двигателя.

Page 2

После установки вентилятора от калины, не нравилось резкое включение вентилятора, когда стоишь в пробке. Резкий провал, обороты падают и восстанавливаются. Подключение через резистор, не дал желаемого результата, но провалы чуть снизились, в салоне все равно было слышно что работает вентилятор.

Пару месяцев назад, на драйве увидел несколько тем по поводу плавного включения вентилятора. Плавного включения вентилятора мне оказалось мало, поэтому поискав информацию, нашел нужный мне вариант. Изначально наткнулся на готовое решение Смерч. Но потом увидел статью в бж драйвовчанина seamen73 с его статьей Контроллер электровентилятора охлаждения двигателя на pic12f675 было принято решение изготовить устройство по его схеме. Хотя в принципе, схема от Смерч почти такая же. Прошивка для PIC12f675 используется от Смерча.

Перед работой над печатной платой, была проблема найти корпус. Заехал в магазин запчастей, и купил довольно интересный корпус (влагозащищенный) модуль ЭПХХ (от какого авто неизвестно).

Фото корпуса и оригинальной платы в нем.

Плату развел под этот корпус. Разъем впаивается в плату. Все получилось компактно.

При проверке устройства, оно не заработало. После некоторого проведенного времени, выяснил, что неисправен мк. Купил новый мк, прошил, заработало. Очень понравилась настройка включения вентилятора. Надо прогреть авто до температуры срабатывания вентилятора, и крутить подстроечный резистор до сработки вентилятора управляемого новым устройством.

Установил в подкапотное пространство:

Очень доволен устройством. Сейчас, он включается практически не слышно (правда на самых малых оборотах происходит гул обмотки эл.вентилятора). Если этот гул отсутствовал на малых оборотах, то это устройство считал бы идеальным. На максимум вентилятор не включался ниразу, обороты при включении не плавают. Если это устройство выйдет из строя, то автоматически при достижении нужной температуры, сработает штатная система охлаждения двигателя.

Куда дует вентилятор охлаждения?

В этой статье мы не можем обойти вниманием вопрос о том, куда дует интересующий нас механизм. Именно его задают экспертам и коллегам-автолюбителям пользователи на десятках и сотнях форумах, посвященных обслуживанию транспортных средств. На самом деле ответ на него очень прост.

Само назначение охлаждающего устройства и принцип его работы, описанный выше, говорит нам о том, что дует он исключительно на двигатель, засасывая холодный воздух через радиатор.

Если в вашем автомобиле поток воздуха направлен не на мотор, а на радиатор, это означает только то, что вентилятор неправильно подключили после технического обслуживания либо выполнения ремонтных работ. Вероятнее всего, просто-напросто спутали клеммы. Следует установить их правильно, и больше никогда не задаваться вопросом, куда вентилятор должен направлять поток охлажденного воздуха.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector