Toyota-navi.ru

АвтоКлуб Toyota
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Чему равна степень сжатия у современных дизельных двигателей

Сравниваем бензиновый и дизельный двигатель

в Двигатель 04.01.2018 2,012 Просмотров

Выбирая новый автомобиль, непременно встает вопрос, «Какой двигатель мне выбрать: бензиновый или дизельный?». Конечно, и дизельный и бензиновый двигатели имеют как недостатки, так и неоспоримые достоинства и выбор предопределяют личные предпочтения и условия автолюбителя. Давайте рассмотрим, какими плюсам и минусами обладают данные ДВС, чтобы упростить выбор при подборе идеального двигателя.

Преимущества высокой степени сжатия

Двигатель внутреннего сгорания работает за счет воспламенения смеси воздуха и паров топлива. При воспламенении смесь расширяется и толкает поршень, который вращает коленвал. При большей степени сжатия интенсивность давления на поршень увеличивается, и зак один такт двигатель совершает больше полезной работы.

Отсутствие детонации в дизельных двигателях объясняется просто: в камере сгорания сначала сжимается чистый воздух, а топливо впрыскивается позже

При этом подразумевается, что количество бензина в топливо-воздушной смеси остается неизменным, и за счет большего количества воздуха оно сгорает с более высоким КПД.

На современном этапе конструирования легковых автомобилей применение двигателей с низкой степенью сжатия практически прекратилось. Несмотря на то, что в них допустимо использовать низкооктановый и недорогой бензин А-80, их популярность равна нулю. Дело в том, что современные потребители стремятся приобретать автомобили с большим количеством «лошадей под капотом», а с двигателей, рассчитанных на низкооктановый бензин (например, двигателя УАЗ 469, (который, правда, с измененной степенью сжатия и рядом модернизаций устанавливается в УАЗ Hunter), снять большую мощность невозможно по конструктивным причинам.

Можно ли изменить степень сжатия?

Увеличить степень сжатия можно, уменьшив объем камеры сгорания, но при модернизации уже имеющегося двигателя инженерам приходится постоянно искать компромисс между эффективностью и безопасностью. Дело в том, что, увеличение степени сжатия ведет к понижению детонационного порога.

Если увеличить степень сжатия слишком сильно, можно столкнуться с тем, что имеющимися средствами предотвратить возникновение детонации не получится. Иными словами, порой разработать (или поставить от другого, более мощного автомобиля) новый двигатель легче, чем модернизировать старый.

Для современных двигателей характерна высокая степен сжатия. В подавляющем большинстве случаев в них используется бензин с октановым числом не ниже 95 или даже 98.

Один из вариантов изменения степени сжатия, доступный частным тюнерам – фрезеровка головки блока цилиндров. После «укорачивания» ГБЦ объем камеры сгорания уменьшается.

Степень сжатия в этом случае увеличится. Есть и обратная сторона такой манипуляции (кстати, официально ее называют форсированием) уменьшится общий объем горючей смеси, сгорающей в цилиндре за один цикл.

Что такое степень сжатия?

Скажете ли вы на память, какая степень сжатия у двигателя вашего авто? Допустим, 9,8; не слишком ли много? А может, наоборот, – мало?

Непростой вопрос, ведь конструкторы моторов с искровым зажиганием [Мы обычно говорим бензиновый, хотя знаем, что автомобильные двигатели прекрасно работают и на газе. А также на спирте – метиловом или этиловом… Так что лучше выражаться: с искровым зажиганием. Или Отто (по имени создателя такой конструкции Николауса Отто) – в отличие от Дизеля. Хоть и странновато звучит, но точнее.] всячески стремятся повысить степень сжатия. А создатели двигателей с воспламенением от сжатия наоборот – стараются ее понизить…

Своеобразная характеристика д.в.с., вокруг которой бытует немало недоразумений. Причем одна из ключевых – от степени сжатия зависит многое. Хотя, на первый взгляд, нет ничего проще: отношение полного объема цилиндра к объему камеры сгорания. Или иначе: частное от деления объема надпоршневого пространства в н.м.т. на него же – в.м.т. То есть, геометрическая степень сжатия показывает, во сколько раз сжимается топливовоздушная смесь (воздух в цилиндрах дизеля) при движении поршня от н.м.т. к в.м.т. Геометрическая; а в жизни, естественно, получается не всегда так, как в геометрии…

Читать еще:  Что может случится если перелить масло в двигатель

Объемы 4-тактного поршневого двигателя: Vk – объем камеры сгорания; Vp – рабочий объем цилиндра; Vo – полный объем цилиндра; ВМТ – верхняя мертвая точка; НМТ – нижняя мертвая точка.

Вперед и выше

На заре автомобилизма степень сжатия двигателей Отто (а собственно, других 100 лет назад и не знали) делали невысокой – 4-5. Чтобы при работе на низкооктановом бензине (гнали как умели) не возникала детонация [Кто не слышал детонационные звуки в цилиндрах? Как говорится, «пальцы стучат». При слишком высокой (по качеству горючего) степени сжатия, горение топливовоздушной смеси после ее воспламенения от искры нарушается. Оно приобретает взрывной характер, в камере сгорания возникают ударные волны, от которых мотору не поздоровится.] . Скажем, при рабочем объеме цилиндра в 400 «кубиков» объем камеры сгорания – 100 миллилитров. То есть, геометрическая степень сжатия у нашего двигателя

e = (400+100)/100 = 5.

Если же объем камеры сгорания уменьшить – при прочих равных – до 40 см 3 (технически несложно), то степень сжатия повысится до

e = (400+40)/40 = 11.

Замечательно – и что? А то, что термический к.п.д. двигателя увеличится почти в 1,3 раза. И если 6-цилиндровый 2,4-литровый мотор развивает со степенью сжатия 5 мощность в 100 л.с., то со степенью сжатия 11 она повысится до без малого 130. Причем при неизменном расходе горючего! Иными словами, расход топлива в расчете на 1 л.с. в час сокращается на 22,7%.

Короткоходный 3,8-литровый двигатель Porsche 911 со степенью сжатия 11,8! Объем камеры сгорания настолько мал (59 см 3 ), что трудно устроить углубления в днище поршня под головки клапанов

Поразительный результат – самыми простыми средствами. Не слишком ли хорошо, чтобы быть правдой? Никакой мистики: чем выше степень сжатия, тем ниже температура отработанных газов, идущих на выхлоп. При e = 11 мы попросту заметно меньше обогреваем атмосферу, чем при степени 5; вот и все.

Азы теплотехники

Автомобильные двигатели – разновидность тепловых машин, которые подчиняются законам термодинамики. Еще в 1-й половине XIX в. замечательный французский физик и инженер Сади Карно заложил основы теории тепловых машин – в том числе и д.в.с. Так вот, по Карно, к.п.д. двигателя внутреннего сгорания тем выше, чем больше разница между температурой газов (рабочего тела) к концу горения топливовоздушной смеси – и их температурой на выпуске. А разница температур зависит от e – вернее, от степени расширения рабочих газов в цилиндрах.

Sadi Carnot (1796-1832)

Да, тут есть нюанс: по Карно, для термического к.п.д. важна не степень сжатия, а именно степень расширения. Чем сильнее расширяются горячие газы на рабочем ходу, тем ниже падает их температура – естественно. Просто в обычных конструкциях д.в.с. степень расширения геометрически совпадает со степенью сжатия; вот мы и привыкли говорить. Тем более что детонация зависит как раз от e – то есть от компрессии. Чем сильнее сжимается топливовоздушная смесь в цилиндрах двигателя Отто [Именно Отто, дизели детонации не знают. Почему – отдельный разговор.] , чем выше давление и температура к моменту искрообразования, тем вероятнее возникновение ударных волн в камере сгорания.

Взрывное горение, детонация. Она-то и ограничивает степень сжатия, но степень расширения рабочих газов здесь ни при чем. Вот если каким-то образом отделить одну степень от другой – чтобы при умеренной компрессии добиться сильного расширения рабочих газов…

Пятитактный цикл

Pourquoi бы и не pas; ведь уже полвека с лишним известен так называемый 5-тактный цикл Atkinson’а/Miller’а. Он как раз и разводит степень сжатия и степень расширения по разные стороны.

Представьте, что у вашего 1,5-литрового 16-клапанника ВАЗ-2112 впуск заканчивается не на 36° после н.м.т. (по углу поворота коленчатого вала), а очень поздно – на 81°. То есть, при 3 тыс. оборотов поршень на своем ходе к в.м.т. вытесняет часть топливовоздушной смеси через открытые клапаны обратно во впускной коллектор (не беспокойтесь, она там не пропадет). Иными словами, такт сжатия начинается только где-то на 75° после н.м.т., а до того имеет место своеобразный такт обратного вытеснения смеси.

Читать еще:  Через сколько надо менять масло в двигателе кашкай

Тактов теперь не 4, а 5: впуск, обратное вытеснение, сжатие, рабочий ход, выпуск. На первый взгляд, идиотская схема: зачем гонять смесь туда-обратно? На первый взгляд и Солнце обращается вокруг Земли… Следите за моими руками: допустим, обратно вытесняется 20% топливовоздушной смеси, уже попавшей в цилиндр, и сжимается только 80%. И пусть геометрическая e равна 13 – исключительно высокая для Отто. Однако реальная степень сжатия, компрессия гораздо ниже: при 20-процентном обратном вытеснении смеси она равна 10,6. Что и требовалось доказать.

У конструкции с реальной степенью сжатия 10,6 (вполне допустимо для товарного бензина) степень расширения рабочих газов – 13. Термический к.п.д. двигателя по факту в 1,0518 раза выше, чем по его реальной степени сжатия; не так много, но моторостроители годами бьются ради 5-процентной экономии горючего. Двигатели пассажирских автомобилей уже вовсю работают по 5-тактному циклу. Возьмите 1,5-литровую тойотовскую «четверку» 1NZ-FXE (для Prius) или фордовскую 2,26-литровую (для Escape hybrid). Вроде блестящее решение, однако у медали есть и оборотная сторона.

Тойотовская «четверка» 1NZ-FXE: тоже 5-тактный цикл. На глаз заметно, насколько профиль впускного кулачка шире выпускного: крайне позднее закрытие впускных клапанов

Геометрическая e (степень расширения рабочих газов) у 1NZ-FXE – 13, реальная степень сжатия – около 10,5. Печаль в том, что из-за обратного вытеснения смеси 1,5-литровый мотор по крутящему моменту и мощности опускается примерно до 1,2-литрового; выигрываем в термическом к.п.д. – ценой потери реального литража. Так что с одной стороны – с другой стороны.

Мало того, двигатель с поздним закрытием впускных клапанов совсем не тянет «на низах». Поэтому 5-тактный цикл годится в «гибридных» силовых агрегатах, где тяговый электромотор как раз и принимает на себя нагрузку при самых низких оборотах. А потом подхватывает д.в.с.; так или иначе, 5-тактный цикл позволяет повысить степень расширения рабочих газов и термический к.п.д. двигателя.

У двигателя Honda, работающего по 5-тактному циклу, часть топливовоздушной смеси вытесняется поршнем обратно во впускные каналы 1 – впуск; 2 – обратный выброс топливовоздушной смеси; 3 – пятый такт: сжатие.

А вот наддув – наоборот – вынуждает понижать степень сжатия. При подаче топливовоздушной смеси под избыточным давлением, реальная компрессия в цилиндрах оказывается слишком высокой – даже при умеренной геометрической e. Приходится отступать; отсюда снижение термического к.п.д. и повышенный расход бензина у двигателей с наддувом, если не применять спецгорючее.

На спирту

Чем больше октановое число бензина, тем выше допустимая (по условиям детонации) степень сжатия, тем эффективнее работает мотор. Так ведь не бензином единым… Исключительно высокую e допускает в роли горючего газ – нефтяной или природный. Без наддува 13-14 не вопрос, с компрессором – 10-11. Водород тоже отличается стойкостью против детонации. И еще спирт – метиловый или этиловый: потрясающие антидетонационные качества. Вдобавок у спирта высокая теплота испарения; испаряясь, он сильно охлаждает топливовоздушную смесь (а заодно и поверхность камеры сгорания). Холодная смесь плотнее, и в цилиндр ее – по весу – входит заметно больше; реальный коэффициент наполнения оказывается выше. Крутящий момент, мощность. Так и говорят: «компрессорный» эффект спиртового горючего.

Мощность, термический к.п.д. – все удовольствия сразу. Кроме того, этиловый (питьевой!) спирт еще и экологичен; что еще пожелать? Правда, расход спиртового топлива в литрах оказывается гораздо выше, чем бензина, поскольку теплотворная способность метанола и этанола невысока. Как водка и «сушняк»; равнять литр на литр тут бессмысленно. А вот в энергетическом эквиваленте спирт заметно эффективнее бензина – благодаря высокой степени сжатия (расширения). Так что в перспективе – спиртовое топливо, чистое или в смеси с бензином. Скажем, E85: на 85% этанол и на 15% бензин. И лет через 25 нефть потеряет свое значение в мире…

Читать еще:  Влияние режима работы двигателя на загрязнение окружающей среды

Истина в мере

В перспективе, а пока повысить степень сжатия ВАЗовского 16-клапанника с 10,5 до 11,5 – на 92-м бензине от местной АЗС – ой как непросто. Скажем, применить впрыск бензина непосредственно в камеры сгорания – вместо впускных каналов. Испарение бензина не на впуске, а в цилиндрах – тот же самый «компрессорный» эффект. Или организовать 2-искровое зажигание – с 2 свечами на цилиндр; кое-что дает. А также поставить выпускные клапаны с внутренним (натриевым) охлаждением; раскаленные тарелки провоцируют детонацию. Очистить поверхность камеры сгорания от нагара – и отполировать ее.

Влияет конфигурация камеры сгорания – и скорость вихревого движения топливовоздушной смеси. Есть много способов борьбы с детонацией – хороших и разных.

А до какого уровня есть смысл поднимать e двигателя Отто? Тут вот что: термический к.п.д. нарастает с повышением степени сжатия (расширения!), но не линейно. То есть, рост к.п.д. замедляется: если от 5 до 10 он повышается в 1,265 раза, то от 10 до 20 – только в 1,157 раза. Зато быстро накапливаются побочные заморочки, которых лучше избегать. Поэтому степень сжатия 13-14 – разумный компромисс, к которому и следует стремиться. Только оставьте окончательное решение за инженерами-конструкторами; они знают лучше.

Самый-самый

Дизельные автомобили могут различаться по мощности, топливной экономичности и другим характеристикам. Существует множество рейтингов, в которых перечислены лучшие совершенно разные автомобили. Это совершенно нормально — все зависит от аудитории, области исследования и количества респондентов. И мнения болельщиков и экспертов также часто кардинально расходятся.

Следует отметить, что в вопросе определения лучшего дизельного автомобиля сошлись мнения многих экспертов и обычных водителей. Первенство единогласно присуждается Volkswagen Golf. Автомобиль считается комфортным, экономичным и надежным. Он оснащен 8-10 подушками безопасности.

Лучшим кроссовером является Range Rover Evoque. Это и практично, и престижно. Он имеет упрощенное оборудование, отличную мощность и высокую степень безопасности. Существует вариант с тремя дверями. Он отличается меньшим весом и повышенной жесткостью кузова для оптимизации характеристик управляемости автомобиля.

Audi Q7 — самый мощный дизельный легковой автомобиль. Он оснащен 12-цилиндровым двигателем объемом 6 литров. Его мощность достигает 500 лошадиных сил. Несмотря на вес в 2,5 тонны, автомобиль способен конкурировать с современными спортивными автомобилями. Автомобиль разгоняется до 100 км/ч всего за 5,5 секунды. Эта модель не доступна в продаже, а производится исключительно по заказу.

Лучшие дизельные автомобили не всегда маневренны и способны развивать высокую скорость. Кроссовер BMW X6 считается самым быстрым из них. Он имеет двигатель с 6 цилиндрами и объемом 3 литра. Три турбокомпрессора позволяют автомобилю мощностью 381 л.с. разгоняться до 100 км всего за 5,2 секунды. Максимальная скорость этого автомобиля достигает 290 км/ч. Производители не останавливаются на достигнутом. В будущем планируется запуск автомобиля с двигателем quad-turbo мощностью до 390 лошадиных сил.

Лучшие дизельные автомобили, как правило, отличаются низким расходом топлива. Seat Ecomotive считается самым экономичным из них. Расход топлива составляет всего 3,3 литра на 100 километров в комбинированном режиме. Несмотря на то, что объем двигателя составляет всего 1,2 литра, его нельзя назвать слабым. Ecomotive сможет развивать скорость до 175 км/ч и разгоняться до 100 км/ч за 13 секунд.

Резюмируя все вышесказанное, можно сказать, что будущее автомобилестроения — за дизельными двигателями. Они долговечны, надежны и экономичны. По правде говоря, недавно было обнаружено, что их выхлопные газы содержат вещества, способные вызывать рак у человека. Поэтому инженерам мировых производителей придется потрудиться, чтобы разработать фильтры, улавливающие вредные вещества и не пропускающие их в атмосферу.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector