Что будет с асинхронным двигателем если малы конденсаторы
Как подобрать и подключить конденсатор для трехфазного двигателя
К каждому объекту изначально подается трехфазный ток. Основная причина заключается в использовании на электростанциях генераторов с трехфазными обмотками, сдвинутыми по фазе между собой на 120 градусов и вырабатывающими три синусоидальных напряжения. Однако при дальнейшем распределении тока потребителю подводится только одна фаза, к которой и подключается все имеющееся электрооборудование. Иногда возникает необходимость в использовании нестандартных устройств, например как подобрать конденсатор для трехфазного двигателя. Как правило, требуется рассчитать емкость данного элемента, обеспечивающего устойчивую работу агрегата.
- Принцип подключения трехфазного устройства к одной фазе
- Схемы подключения трехфазного двигателя к однофазной сети
- Виды пусковых конденсаторов
- Выбор конденсатора для трехфазного двигателя
- Расчет емкости
- Как подключить пусковой и рабочий конденсаторы
Подключение однофазного коллекторного двигателя — переменного тока
В этой теме необходимо понять, — как именно подключается однофазный коллекторный двигатель переменного тока, допустим, после его ремонта. Электрическая схема рис.1 дает нам представление о характере электрических соединений, то-есть, здесь мы можем заметить, что две обмотки статора электродвигателя в электрической цепи состоят в последовательном соединении, а две обмотки ротора электродвигателя относительно внешнего источника напряжения — соединены параллельно и электрическая цепь для данного примера замыкается на обмотках ротора электродвигателя.
Кто разбирал из нас бытовые потребители электроэнергии как:
и далее, со мной согласятся, что для электрической схемы рис.1 недостает еще одного элемента — конденсатора. Следовательно, к данному названию типа двигателя можно еще добавить такое название как конденсаторный электродвигатель . Если следовать логическому мышлению, то конденсатор в схеме электродвигателя в обязательном порядке соединяется с пусковой обмоткой статора, который служит для первоначального сдвига ротора. Соответственно мы пришли к выводу, что конденсатор непосредственно должен состоять в последовательном соединении с пусковой обмоткой. Для примера, приведена схема однофазного двигателя с рабочей и пусковой обмотками статора, где сопротивление на каждой обмотке будет принимать свое значение рис.2.
В зависимости от типов асинхронных двигателей и их применения рис.3, существуют следующие схемы подключения к однофазной сети:
а) омический сдвиг фаз, биффилярный способ намотки пусковой обмотки;
б) емкостной сдвиг фаз с пусковым конденсатором;
в) емкостной сдвиг фаз с пусковым и рабочим конденсатором;
г) емкостной сдвиг фаз с рабочим конденсатором.
В схемах указаны следующие обозначения:
Перед подключением коллекторного однофазного двигателя, необходимо определить:
обмотки статора. Конденсатор, с его номинальными значениями по емкости и напряжению, и соответствующими данными для определенного типа двигателя, следует подключать к пусковой обмотке статора — последовательно. Сопротивление обмоток статора принимает следующие средние значения:
- рабочая обмотка 10-13 Ом;
- пусковая обмотка 30-35 Ом;
- общее сопротивление обмоток 40-45 Ом,
— для некоторых видов бытовой техники. Выполняя замеры сопротивлений на выводах проводов обмоток статора можно определить пусковую обмотку с ее средним значением. То-есть, сопротивление пусковой обмотки принимает среднее значение между рабочей обмоткой и общим сопротивлением двух обмоток — рабочей и пусковой.
Как подобрать конденсатор для двигателя
При выборе конденсатора на трехфазный двигатель важно помнить о том, что мощность в нем должна иметь десятки и сотни микрофарад.
Но электролитические конденсаторы с такой целью выбирать не рекомендуется.
Для них понадобится однополярное подключение, а это потребует установки дополнительного оборудования.
Кроме того, данный вариант может привести к быстрому выходу двигателя из строя в связи с перегревом.
Так же необходимо уметь отличать рабочий конденсатор от пускового. Первый вариант работает на протяжении всего цикла действий двигателя, а второй только помогает ему запуститься.
Рабочий не стоит выбирать, так как его мощность вдвое меньше чем у пускового.
При правильно сделанном выборе конденсатора его рабочие показатели повысятся.
Кроме того, конденсатор, подходящий к двигателю позволит значительно продлить жизнь мотора.
Вращающаяся катушка в магнитном поле имеет тенденцию производить синусоидальное напряжение. При подключении к цепи некоторый ток будет течь в зависимости от того, насколько напряжение в системе отличается от этого напряжения холостого хода. Обратите внимание, что механический крутящий момент (создаваемый двигателем, необходимый для генератора) соответствует только реальной мощности. Реактивная мощность не приводит к крутящему моменту.
По мере увеличения механической нагрузки на синхронный двигатель ток статора увеличивается независимо от возбуждения поля. Как для двигателей с недостаточным, так и с избыточным возбуждением коэффициент мощности (pf) стремится приближаться к единице с увеличением механической нагрузки. Это изменение коэффициента мощности больше, чем изменение с увеличением нагрузки. я а < displaystyle I_ > я а < displaystyle I_ >
Фаза тока якоря меняется с возбуждением поля. Тока имеют большие значения для более низких и более высоких значений возбуждения. Между ними ток имеет минимальное значение, соответствующее определенному возбуждению (см. График справа). Вариации с возбуждением известны как кривые из-за их формы. я < displaystyle I> V < displaystyle V>
Для одной и той же механической нагрузки ток якоря изменяется в зависимости от возбуждения поля в широком диапазоне, что приводит к соответствующему изменению коэффициента мощности. При избыточном возбуждении двигатель работает с опережающим коэффициентом мощности (и подает переменные в сеть), а при недовозбуждении — с запаздывающим коэффициентом мощности (и поглощает переменные из сети). Между ними коэффициент мощности равен единице. Минимальный ток якоря соответствует точке, равной единице коэффициента мощности (напряжение и ток в фазе).
Как и в синхронном двигателе, статор машины подключен к трехфазному источнику напряжения (предполагается, что он постоянный), и это создает вращающееся магнитное поле внутри машины. Точно так же ротор возбуждается постоянным током, который действует как электромагнит. При нормальной работе магнит ротора следует за полем статора с синхронной скоростью. Вращающийся электромагнит индуцирует трехфазное напряжение в обмотках статора, как если бы машина была синхронным генератором. Если машина считается идеальной, без механических, магнитных или электрических потерь, ее эквивалентной схемой будет генератор переменного тока, включенный последовательно с индуктивностью обмотки статора. Величина зависит от тока возбуждения и скорости вращения, а поскольку последняя фиксирована, зависит только от . Если критически настроено на значение , будет равно и противоположно , а ток в статоре будет равен нулю. Это соответствует минимуму на кривой, показанной выше. Если, однако, выше , будет превышать , и разница объясняется напряжением, возникающим на индуктивности статора : где — реактивное сопротивление статора. Теперь ток статора больше не равен нулю. Так как машина является идеальным, , и все будет в фазе, и будет полностью реактивным (т.е. в фазовой квадратуре). Если смотреть со стороны питания клемм машины, отрицательный реактивный ток будет течь через клеммы, и, следовательно, машина будет выглядеть как конденсатор, величина реактивного сопротивления которого будет падать по мере увеличения выше . Если отрегулировано, чтобы быть меньше , будет превышать , и положительный реактивный ток будет течь в машину. Тогда машина будет выглядеть как индуктор, реактивное сопротивление которого будет падать при дальнейшем уменьшении. Эти условия соответствуют двум восходящим плечам V-образных кривых (вверху). В практической машине с потерями эквивалентная схема будет содержать резистор, подключенный параллельно клеммам, для представления механических и магнитных потерь, и еще один резистор, подключенный последовательно с генератором и L, представляющий потери в меди в статоре. Таким образом, на практике машина будет содержать небольшую синфазную составляющую и не будет падать до нуля. V s < displaystyle V_ > я е < displaystyle I_
V грамм < displaystyle V_
L < displaystyle L>
V грамм < displaystyle V_
я е < displaystyle I_
V грамм < displaystyle V_
я е < displaystyle I_
я е < displaystyle I_
я e0 < displaystyle I _ < text
V грамм < displaystyle V_
V s < displaystyle V_
> я s < displaystyle I_
> я е < displaystyle I_
я e0 < displaystyle I _ < text
V грамм < displaystyle V_
V s < displaystyle V_
> V 1 < displaystyle V_ <1>>
L < displaystyle L>
V L знак равно я s Икс L < displaystyle V_
X_ Икс L < displaystyle X_
я s < displaystyle I_
> V грамм < displaystyle V_
V L < displaystyle V_
V s < displaystyle V_
> я s < displaystyle I_
> я р < displaystyle I_
я s0 < displaystyle I _ < text
я е < displaystyle I_
я e0 < displaystyle I _ < text
V s < displaystyle V_
> V грамм < displaystyle V_
я е < displaystyle I_
я s < displaystyle I_
>
Рекомендации по выбору типа конденсаторов для асинхронных двигателей
В процессе работы двигателей по обмотке течет ток, на 20-40% превышающий номинальный, поэтому при использовании электромотора в недозагруженном режиме или в режиме холостого хода, емкость рабочего конденсатора следует уменьшить.
В целях безопасности все пусковые конденсаторы должны использоваться с разрядным резистором. Сопротивление разрядного резистора подбирается так, чтобы по истечении 50 секунд полностью снять остаточное напряжение с конденсатора.
В случаях когда конденсатор используется при последовательной схеме включения со вспомогательной обмоткой электродвигателя, напряжение на клеммах конденсатора при рабочей скорости может быть значительно выше напряжения сети.
В процессе эксплуатации конденсаторов они могут устанавливаться непосредственно в физическом контакте с электродвигателем. В этом случае при выборе типа конденсатора необходимо учитывать, что конденсатор будет подвергаться воздействию повышенной температуры и вибраций — как от самого электродвигателя, так и от других пассивных элементов различного рода устройств, в составе которых будет применятся конденсатор.
При работе моторных конденсаторов проходят различного рода сложнейшие коммутационные процессы, в результате которых происходят скачкообразные изменения напряжения на клеммах конденсатора, в связи с чем номинальное напряжение конденсатора нужно выбирать так, чтобы в процессе работы изделия рабочее напряжение не превышало его более чем на 10%.
В процессе выбора необходимой емкости и рабочего напряжения нужно учитывать фактор резонанса, то есть когда значения напряжения вспомогательной обмотки электродвигателя и конденсатора находятся в околорезонансной точке. В этом случае происходит повышение напряжения на клеммах изделия.
Предельное напряжение на клеммах пускового конденсатора должно быть не более 450В, а его емкость выбирается, как правило, в два и более раз больше емкости рабочего конденсатора.
Как показывает практика, на каждые 100 Вт мощности электродвигателя требуется около 6-7 мкФ.
В случае, если не удается подобрать емкость в одном корпусе, допускается комбинирование путем параллельного соединения конденсаторов Собщ=С1+С2….+Сn.
При правильно подобранном конденсаторе мощность трехфазного двигателя, включенного в однофазную сеть, не должна уменьшиться более чем на 30%.
Проверка пускового и рабочего конденсаторов
Проверить конденсатор можно с помощью измерителя ёмкости конденсаторов, такие приборы выпускаются как отдельно, так и в составе мультиметра- универсального прибора, который может измерять много параметров. Рассмотрим проверку мультиметром.
- обесточиваем кондиционер
- разряжаем конденсатор, закоротив еговыводы
- снимаем одну из клемм (любую)
- выставляем прибор на измерение ёмкости конденсаторов
- прислоняем щупы к выводам конденсатора
- считываем с экрана значение ёмкости
У всех приборов разное обозначение режима измерения конденсаторов, основные типы ниже на картинках.
В этом мультиметре режим выбирается переключателем, его необходимо поставить в режим Fcх.Щупы включить в гнёзда с обозначением Сх.
Переключение предела измерения ёмкости ручное. Максимальное значение 100 мкФ.
У этого измерительного прибора автоматический режим, необходимо только его выбрать, как показано на картинке.
Измерительный пинцет от Mastech также автоматически измеряет ёмкость, необходимо только выбрать режим кнопкой FUNC, нажимая её, пока не появится индикация F.
Для проверки ёмкости, считываем на корпусе конденсатора её значение и ставим заведомо больший предел измерения на приборе. (Если он не автоматический)
К примеру, номинал 2,5 мкФ (μF), на приборе ставим 20 мкФ (μF).
После подсоединения щупов к выводам конденсатора ждём показаний на экране, к примеру время измерения ёмкости 40 мкФ первым прибором — менее одной секунды, вторым — более одной минуты, так что следует ждать.
Если номинал не соответствует указанному на корпусе конденсатора, то его необходимо заменить и если нужно подобрать аналог.
Почему непросто подобрать конденсатор?
Хотя существенных отличий нет, но разные конденсаторы для асинхронных движков требуют отличные друг от друга способы вычисления допустимого показателя напряжения. Обычно необходимо примерно 100 Ватт на 1 мкФ емкости прибора. У таких моторов существуют несколько возможных режимов работы:
- ставится пусковой конденсатор, организуется вспомогательный слой обмотки (именно для этапа пуска). В данной ситуации расчет емкости устройства будет таковым – 70 мкФ на киловатт мощности электродвигателя;
- устанавливается рабочее устройство, конденсаторная емкость которого в пределах 25-35 мкФ. В этом случае будет нужна дополнительная обмотка и постоянное подключение конденсатора на протяжении всего срока работы мотора;
- используется сетевой конденсатор при одновременном подключении пускового устройства.
В любом случае важно отслеживать уровень нагрева электромотора в ходе его эксплуатации. Заметив перегревание элементов двигателя, следует принять срочные меры. Если стоит рабочий конденсатор, потребуется уменьшить его емкость. Специалисты рекомендуют применять устройства, функционирующие на основе мощности от 450 Ватт или больше, так как они считаются универсальными.
Еще до установки рекомендуется проверить работоспособность конденсатора специальным прибором – мультиметром.
Пусковой конденсатор – это маленький элемент электрической цепи, необходимый для того, чтобы движок как можно скорее «набрал» нужные обороты. Рабочее устройство служит для поддержания оптимальной нагрузки на мотор.
Сконструировать полностью работоспособную схему можно самостоятельно. Между электромотором и кнопкой ПНВС нужно поставить рабочий, а, при необходимости, еще и пусковой конденсатор. Обычно выводы обмоток расположены в клеммной части движка, поэтому модернизация подключения может быть любой.
Следует помнить, что рабочее напряжение пускового конденсатора должно составлять 330-400 Вольт. Это объясняется «всплеском» мощности при запуске или завершении работы мотора.
Так в чем же отличие однофазного асинхронного мотора? Такой тип двигателя чаще встречается в бытовой технике, для его активации необходима вспомогательная пусковая обмотка и конденсатор для смещения фазы. Подключить его допускается на основе множества доступных схем. В продаже встречаются конденсаторы трех видов:
- полярные;
- неполярные;
- электролитические.
Полярные запрещено применять для подключения электромоторов в сеть переменного тока. Диэлектрик внутри устройства быстро разрушится и произойдет замыкание.
Поэтому в данном случае нужно использовать неполярные конденсаторы. Их обкладки будут одинаково взаимодействовать и с источником тока, и с диэлектриком.