Что такое номинальное и рабочее напряжение в двигателях
Посмотрите на фотографию шильдика. Давайте полностью рассмотрим шильдик.
- Логотип производителя. Тут всё понятно.
- Название «двигатель асинхронный» и его тип «АИР350S6 У2». В типе по определенным алгоритмам шифруются различные параметры двигателя. На них останавливаться не будем, поскольку не каждый производитель придерживается каких-то стандартов. Обычно в названии могут шифроваться данные о количестве пар полюсов, типоразмер и т.д. Тем не менее, производители могут придумать свою систему шифрования и кодировать в них какие-то свои данные.
- Далее идет мощность «45 кВт». Это показатель максимальной мощности, которую двигатель способен развивать при указанных параметрах на шильдике
- Количество оборотов вала «980 об/мин». Обороты в минуту могут иметь другое обозначение — «мин -1 ». У асинхронных двигателей количество оборотов фиксированное и зависит от количества пар полюсов. Существуют двигатели, допускающие посредством изменения схемы соединения обмоток в клеммной коробке изменить количество оборотов. Если двигатель выполнен на определенные обороты, то изменить их стандартными способами не получится.
- Дальше идёт обозначение количества фаз, род напряжения и схема соединения. 3Ф или 3P — цифра указывает количество фаз, а буква или русская или английская («Ф»аза или «P»hase) указывает на слово «фаза». Далее идет знак «
», который означает, что используется переменное напряжение, и затем схема соединения обмоток «Δ/Y», и указывает на то, что имеется возможность без сложных манипуляций изменить схему соединения обмоток на звезду или треугольник. То есть в клеммную коробку уже выведены все необходимые для этого провода.

Ну вот и всё. Теперь вам не составит труда узнать данные двигателя по шильдику. За сим позвольте с вами попрощаться
С наилучшими пожеланиями, Я!
Выбираем степень защиты от токов КЗ (ток отсечки)
Вторая функция защитного автоматического выключателя — отключать питание при появлении сверх токов, которые возникают при коротком замыкании (КЗ). Автоматы защиты рассчитаны на разные величины этих токов, а характеристика, которая ее отображает — отключающая способность или ток отсечки. Она показывает, при каком токе КЗ автомат все еще останется в рабочем состоянии. Дело в том, что срабатывает пакетник не моментально, ведь существует задержка срабатывания для игнорирования пусковых перегрузок. Во время этой задержки контакты могут оплавиться и устройство окажется неработоспособным. Так вот, ток отсечки или отключающая способность показывает, какой ток могут вынести контакты без ущерба работоспособности.
В бытовой электросети применяются защитные автоматы с тремя степенями защиты от токов КЗ: 4500 А, 6000 А, 10000 А. На корпусе прибора эти цифры проставляются в рамочке чуть ниже номинала автомата. По цене разница довольно ощутима, но это оправдано — в более «стойких» пакетниках используют тугоплавкие материалы, а они значительно дороже.
Как выбрать автомат защиты в этом случае? Выбор зависит от местоположения сети относительно подстанции. Если дом или квартира находятся недалеко, токи КЗ могут быть очень большими, потому отключающая способность должна быть не ниже 10000 А. Если домовладение находится в сельской местности, сети там старые и/или подача происходит по воздушной сети, достаточно автомата с отключающей способностью 4500 А. Во всех остальных случаях ставят на 6000 А.
Электрические машины служат для преобразования механической энергии в электрическую (электрические генераторы), электрической энергии в механическую (электрические двигатели), а также для преобразования: частоты и числа фаз переменного тока, рода тока, например постоянного в переменный ток, постоянного тока одного напряжения в постоянный ток другого напряжения (электромашинные преобразователи).
1. ГОСТ 183-66. Общие технические требования, предъявляемые к электрическим машинам переменного тока с номинальной мощностью свыше 50 Вт (или 50 В Ч А) при частотах до 10 000 Гц и постоянного тока с номинальной мощностью свыше 50 Вт, сформулированы в ГОСТ 183-66. Стандарт распространяется только на электрические машины общепромышленного применения. Электрические машины должны изготовляться в соответствии с требованиями этого стандарта и стандартов или технических условий на отдельные виды электрических машин.
2. Номинальный режим — режим работы, для которого машина предназначена предприятием-изготовителем. Номинальный режим указывается на заводском щитке машины.
3. Номинальные данные электрической машины (мощность, напряжение, ток, частота вращения, коэффициент мощности, коэффициент полезного действия и другие величины) характеризуют номинальный режим ее работы. Они относятся к работе машины на высоте до 1000 м над уровнем моря и при температуре газообразной охлаждающей среды до +40°C и охлаждающей воды до +30 °С (в стандартах и технических условиях может быть установлена другая температура охлаждающей воды, но не более +33 °С).
Номинальные данные машин, спроектированных до утверждения ГОСТ 183-66, относились к температуре газообразной охлаждающей среды +35° С и охлаждающей воды +25° С. Термин « номинальный » может применяться ко всем данным, относящимся к номинальному режиму, независимо от того, указаны эти данные на заводском щитке машины или нет.
4. Номинальные режимы работы электрических машин. Номинальный режим работы электрической машины должен соответствовать одному из следующих основных режимов.
а) Продолжительный режим (условное обозначение режима S1), при котором электрическая машина работает с неизменной нагрузкой, продолжающейся столько времени, что превышения температуры всех частей электрической машины при неизменной температуре охлаждающей среды достигают практически установившихся значений (рис. 15-1, а).
б) Кратковременный режим (S2) с длительностью периода неизменной номинальной нагрузки 10; 30; 60 и 90 минрежим работы, при котором периоды неизменной номинальной нагрузки чередуются с периодами отключения машины; при этом периоды нагрузки не настолько длительны, чтобы превышения температуры всех частей электрической машины при практически неизменной температуре охлаждающей среды могли
достигнуть практически установившихся значений, а периоды остановки электрической машины настолько длительны, что все части ее приходят в практически холодное состояние (рис. 15-1,6).
в) Повторно-кратковременный режим (S3) с продолжительностью включения (ПВ) 15; 25; 40 и 60% (продолжительность одного цикла, если нет других указаний, принимают равной 10 мин)-режим работы электрической машины, при котором кратковременные периоды неизменной номинальной нагрузки (рабочие периоды) чередуются с периодами отключения машины (паузами), причем как рабочие периоды, так и паузы не настолько длительны, чтобы превышения температуры отдельных частей электрической машины при практически неизменной температуре охлаждающей среды могли достигнуть практически установившихся значений.
Повторно-кратковременный номинальный режим работы характеризуется относительной (в процентах) продолжительностью включения (ПВ), определяемой по формуле
где N — время работы; R — пауза. Пусковые потери практически не оказывают влияния на превышения температуры отдельных частей машины (рис. 15-1, в).
г) Перемежающийся режим (S6) с продолжительностью нагрузки (ПН) 15; 25; 40 и 60% (продолжительность одного цикла, если нет других указаний, принимают равной 10 мин) — режим работы электрической машины, при котором кратковременные периоды неизменной номинальной нагрузки (рабочие периоды) чередуются с периодами холостого хода (паузами), причем как рабочие периоды, так и паузы не настолько длительны, чтобы превышения температуры отдельных частей электрической машины при практически неизменной температуре охлаждающей среды могли , достигнуть практически установившихся значений (рис. 15-1, г).
Перемежающийся номинальный режим работы характеризуется относительной (в процентах) продолжительностью нагрузки (ПН), определяемой по формуле
где N — время работы; V — время холостого хода.
Помимо основных номинальных режимов работы S1, S2, S3 и S6 в качестве дополнительных (рекомендуемых) установлены режимы:
а) повторно-кратковременный с частыми пусками (S4) с ПВ 15; 25; 40 и 60%;
б) повторно-кратковременный с частыми пусками и электрическим торможением (S5) с ПВ 15; 25; 40 и 60%;
в) перемежающийся с частыми реверсами при электрическом торможении (S7);
г) перемежающийся с двумя или более частотами вращения (S8).
В дополнительных номинальных режимах устанавливается: число включений в час (режимы S4 и S5), число реверсов в час (режим S7), число циклов в час (режим S8) (если в стандартах или технических условиях не установлено иное) 30; 60; 120; 240 при коэффициенте инерции (см. раздел) 1,2; 1,6; 2,5 и 4.
Рис. 15-1. Основные номинальные режимы работы электрических машин.
а — продолжительный режим S1; б — кратковременный режим S2; в — повторно-кратковременный режим S3; г — перемежающийся режим S6; J м — максимальная температура.
5. Номинальная мощность электрической машины:
а) для генераторов постоянного тока- полезная мощность на зажимах машины;
б) для генераторов переменного тока-полная электрическая мощность при номинальном коэффициенте мощности;
в) для электродвигателей — полезная механическая мощность на валу;
г) для синхронных и асинхронных компенсаторов — реактивная мощность на зажимах компенсатора.
Номинальная мощность генераторов постоянного тока и электродвигателей выражается в Вт, кВт или МВт, генераторов переменного тока и компенсаторов-в ВА, кВА или MBА. Номинальная мощность указывается на заводском щитке электрической машины.
6. Номинальное напряжение электрической машины — напряжение, соответствующее ее номинальному режиму работы.
Номинальное напряжение трехфазной электрической машины — ее междуфазное (линейное) напряжение.
Номинальное напряжение ротора асинхронной машины с контактными кольцами — напряжение разомкнутой роторной обмотки (вторичной цепи) между контактными кольцами при неподвижном роторе и при статорной обмотке (первичной цепи), включенной на номинальное напряжение.
При двухфазной обмотке ротора за его номинальное напряжение принимают наибольшее из напряжений между контактными кольцами.
Номинальное напряжение возбудительной системы электрической машины с независимым возбуждением — номинальное напряжение того независимого источника, от которого получается возбуждение.
7. Номинальное напряжение возбуждения электрической машины — напряжение на зажимах или на контактных кольцах обмотки возбуждения при питании ее номинальным током возбуждения и сопротивлении обмотки при постоянном токе, которое должно быть приведено к расчетной рабочей температуре (см. раздел).
8. Номинальный ток электрической машины — ток, соответствующий номинальному режиму работы электрической машины.
9. Номинальный ток возбуждения электрической машины — ток возбуждения, соответствующий номинальному режиму работы.
10. Номинальное изменение напряжения электрического генератора — изменение напряжения на зажимах генератора (при работе отдельно от других генераторов) при изменении нагрузки от номинальной до нулевок и при сохранении номинальной частоты вращения; кроме того, для машин с независимым возбуждением — при сохранении номинального тока возбуждения, а для машин с самовозбуждением — при обмотке возбуждения, имеющей расчетную рабочую температуру и неизменное сопротивление цепи обмотки возбуждения. Изменение напряжения выражают в процентах или в долях номинального напряжения генератора.
11. Номинальные условия применения -условия, оговоренные в стандарте или технических условиях на данную электрическую машину, при которых эта машина должна иметь номинальную частоту вращения.
12. Номинальная частота вращения электрической машины — частота вращения, соответствующая работе машины при номинальном напряжении, мощности или моменте, частоте тока и номинальных условиях применения.
13. Номинальное изменение частоты вращения электродвигателя — изменение его частоты вращения при номинальном напряжении на его зажимах (а в случае двигателя переменного тока, кроме того, при номинальной частоте) при следующих изменениях нагрузки:
а) для двигателей, допускающих нулевую нагрузку, — от номинальной нагрузки до нулевой;
б) для двигателей, не допускающих нулевой нагрузки, — от номинальной нагрузки до 1 / 4 номинальной нагрузки.
Изменение частоты вращения выражают в процентах или в долях номинальной частоты вращения.
Выбор автоматического выключателя
Выбор автоматического выключателя проводят по его основным характеристикам:
На автоматические выключатели часто наносят
два значения отключающей способности.
Это объясняется тем, что в разных стандартах
используются разные условия испытаний.
10000 : стандарт ГОСТ Р 50345-99 (IEC 60898)
для аппаратов бытового и аналогичного
назначения, где при неквалифицированном
обращении возможно неоднократное
включение неисправной цепи. Наибольшая
отключающая способность (в амперах)
указывается в прямоугольнике без указания
единицы измерения.
10 kA: стандарт ГОСТ Р 50030.2-99
(IEC 60947-2) для всех применений,
где требуется определенная квалификация обслуживающего персонала. В этом случае наибольшая отключающая способность указывается с единицей измерения (кA).
Это ток короткого замыкания, который автоматический
выключатель категории В (см. ниже) способен
выдерживать в течение установленного времени
без изменения своих характеристик.
Этот параметр используется для обеспечения
селективности срабатывания аппаратов.
Соответствующий выключатель может оставаться
замкнутым до тех пор пока значение I2 t не превысит
значения Icw2 . Величина Icw – один из наиболее
важных показателей автоматического выключателя.
Значение Icw указывается для тока, действующего
в течение 1 с. Для других длительностей надо
вводить соответствующие обозначения,
например Icw0,2 . При этом необходимо убедиться
в том, что величина I2 t, характеризующая тепловой
нагрев до момента срабатывания расположенного
ниже аппарата защиты, действительно меньше,
чем Icw2 t.
Расчет номинальной мощности
Метод эквивалентного тока
Применим для расчета номинальной мощности при обязательном соблюдении во время работы неизменности показателей мощности потерь в обмотках двигателя, складывающейся из постоянной и переменной величин мощности, сопротивлений обмоток ротора и статора, потерь на механическое трение. Зная номинальный коэффициент мощности, показатели эквивалентного тока и номинального напряжения, возможно рассчитать номинальную мощность электродвигателя:
где Iэк – показатель эквивалентного тока,
Uном – номинальное напряжение,
cosϕном – номинальный коэффициент мощности, повышающийся с увеличением мощности и номинальной угловой скорости вращения ротора, а также зависящий от нагрузки. Для большинства электродвигателей составляет 0,8-0,9.
Метод эквивалентного момента
Электродвигатели любого типа имеют пропорциональный произведению тока и величине магнитного потока вращающий момент. Метод эквивалентного момента для расчета номинальной мощности используется в тех случаях, когда условия применяемой нагрузки определяют непосредственно требуемый от двигателя момент, а не ток. Для синхронных и асинхронных машин переменного тока коэффициент мощности cosϕ приближенно принимается за постоянную величину:
где Мвр – значение вращающего момента,
ωном – номинальная угловая скорость двигателя.
Определение номинальной мощности опытным путем
Указанная в паспорте или щитке устройства номинальная мощность будет равна этому значению только при оптимальной нагрузке на вал, определяемой заводом-изготовителем для номинального режима. На что ориентироваться, если по каким-то причинам не сохранился паспорт или стерлись надписи на табличке?
Помогут практические измерения и счетчик электроэнергии:
Необходимо полностью отключить все прочие источники потребления электроэнергии: освещение, электроприборы и т.д.
В случае использования электронного счетчика следует подключить двигатель под нагрузкой на 5-6 минут, на электронном дисплее отобразиться величина нагрузки в кВт.
Дисковый счетчик проводит измерения в кВт∙час. Следует записать последние показания и включить двигатель на 10 минут с точностью до секунды. После остановки электромашины отнять из полученного значения записанные показания и умножить на 6. Полученное число и будет являться активной механической мощностью двигателя.
- Для маломощных двигателей можно подсчитать количество оборотов диска счетчика, для каждого из которых указана, чему равна величина полных оборотов в единицах мощности. Несложные расчеты помогут определить искомую величину мощности.
При использовании этого метода важно правильно подобрать нагрузку, поскольку при ее недостаточности или перегрузке определяемый показатель будет далек от номинальной мощности электродвигателя.
История вопроса
Эталон напряжения
14 июля 1729 года произошло великое событие: Стивен Грей догадался проводить статическое электричество по шёлковым нитям и прочим материалам, создав первую цепь. До внедрения электричества предприятиям приходилось располагаться прямо на берегах рек. Что неудобно. Гораздо проще строить заводы вблизи ресурсов.
Сложно вести разработку природных ресурсов вдали от источников энергии. Людская сила не заменит электричество. Первой попыткой передать энергию на расстояние стал коммерческий телеграф в 1837 году длиной линии 20 км. Этим доказано, что возможно передавать энергию на дальние расстояния и выполнять там при помощи неё работу. Пятью годами ранее сэр Джозеф Генри демонстрировал устройство с бухтой провода в милю. Электромагнит поднимал весьма солидный даже по нынешнему времени груз.
Все совершалось при помощи вольтова столба – набора из кружков меди и цинка, разделённых слоем мокрой ткани, пропитанной солёной водой. Первая серьёзная конструкция появилась в 1836 году. Она стала первым эталоном номинального напряжения, измерявшего прочие источники, к примеру, термоэлектрические генераторы. Джон Фредерик Дэниэл пытался решить затруднение выделения газа (водорода) гальваническим источником при работе. Это привело его к идее использования двух электролитов вместо одного.
Дэниэл основывался на докладе профессора Дэви за 1801 год о химической природе вольтова столба, как результата оксидирования металла. Позднее тема затрагивалась Беккерелем. Дэниэл решил проверить электрохимические опыты Фарадея и искал подходящий источник. Как результат, появился новый тип гальванического элемента:
- Исходная конструкция:
- В центре чаши находился цинковый стержень, окружённый бычьим пищеводом. Внутрь заливался слабый раствор цинковой кислоты.
- Вкруг пищевода шёл полый медный цилиндр диаметром 3,5 дюйма, заполненный слабым раствором сульфата меди. Цилиндр покрывался перфорированным диском, сквозь который в центре проходили пищевод быка и цинковый стержень.
- На нижней грани медного диска находились крупные кристаллы сульфата меди, не дававшие раствору выйти из насыщения.
- Реконструкция (см. рис.):
- В центре чаши находится медный полый цилиндр (см. рис.), погруженный в раствор сульфата меди.
- Конструкция умещается внутри мембраны из пищевода быка.
- Снаружи располагался цинковый полый цилиндр, покрытый амальгамой и чуть меньшей высоты, окружённый слабым раствором серной кислоты.
Неизвестно, что привело учёного к столь экзотической конструкции, но она действовала потрясающе. За сто лет до события учёного точно обвинили бы в колдовстве. В 1881 году на Международной конференции электриков решено, что напряжение, выдаваемое одной ячейкой Дэниэла, станет называться 1 В. Эта величина и сегодня используется для измерения номинального напряжения. С оговоркой: действительный потенциал ячейки Дэниэла при температуре 25 градусов Цельсия равен 1,1 В.
Конструктор отмечал, что бычий пищевод возможно заменить фаянсом, но эксплуатационные характеристики ячейки становились хуже. Позже Джон Гасьё предложил использовать неглазированный фарфор в качестве пористой мембраны. Высокое внутреннее сопротивление ячейки обуславливало малый ток, но постоянность потенциала (1,1 В) оказалась быстро замечена, и гальванический элемент использовался в качестве эталона до официального признания таковым в 1881 году. С этого времени говорят о номинальном напряжении.
Поставки энергии
Уже в 1843 году Луис Делеуи при помощи ячеек Бунзена и электрической дуги осветил Площадь Согласия в Париже. Это важный момент, как видно дальше, на французские шоу равнялись прочие видные деятели того времени.
Считается, что первый магнето построен Пикси в 1832 году, но массового применения ток не нашёл. В 1844 году пару ручных генераторов создал Вулрич для гальванизации металлов, и это первые промышленные образцы. В середине 50-х энергию стали использовать, получая её из пара и преобразуя при помощи коленвала и подобных штуковин в электричество. Уже были известны двигатели Пейджа, совершавшие прямо противоположное, толкая составы поездов.
Двухтонный двигатель на 600 оборотов, построенный по проекту Блэквэлла считается первой попыткой создания полностью автоматического парового генератора тока. В паре с ним использовался механический коммутатор для спрямления переменной составляющей. В 1858 году подобные генераторы начали использоваться в качестве оборудования английских маяков. Результат не превзошёл ожидания, но совершился первый шаг к поставкам энергии для нужд человечества.
Параллельно шли демонстрации электрического освещения во Франции. Там новинка служила скорее для развлечения публики. К началу 70-х годов отдельные маяки прочно перешли на электричество, включая одесский. На сцену выходят немцы, прежде остававшиеся в тени английских и французских экспериментов. Организатору и затейнику Оскару фон Миллеру захотелось превзойти иностранцев. Он заказал организовать передачу электрической энергии на расстояние 35 миль. Что стало первой высоковольтной сетью в мире.
Номинал всегда обозначен
Уменьшение напряжения зимой: чем это вызвано?
Иногда автовладельцы сталкиваются с ситуацией, когда в холодное время года параметры АКБ ухудшаются, а автомобиль не удается завести.
Чтобы избежать проблем, предусмотрительные водители снимают источник питания и относят его в тепло.
На самом деле, суть проблем в следующем. При снижении температуры ниже «нуля» плотность электролита также меняется. Следовательно, корректируется и уровень напряжения (как отмечалось выше).
Даже при нормальной зарядке батареи плотность электролита растет, из-за чего увеличивается и U. Следовательно, если АКБ нормально заряжена, бояться ей нечего.
Хуже обстоит ситуация, если бросить на холоде разряженный аккумулятор. В этом случае плотность будет падать и появятся проблемы с пуском мотора. В ряде случаев жидкость может замерзнуть.
Что касается проблем, связанных с пуском АКБ в холодное время года, они возникают из-за торможения химических процессов внутри устройства при снижении температуры ниже нуля.
Это значит, что при нормальном заряде плотность и напряжение АКБ будут достаточными, чтобы пустить двигатель даже зимой.
Зная, какое напряжение должно быть на генераторе автомобиля, можно избежать преждевременного выхода из строя или разряда АКБ, а также своевременно диагностировать неисправность самого генератора.