Что такое подключение мост для двигателя постоянного тока - АвтоКлуб Toyota
Toyota-navi.ru

АвтоКлуб Toyota
9 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое подключение мост для двигателя постоянного тока

Управление двигателем постоянного тока с помощью Arduino и ИМС L298

Подключив к Arduino микросхему моста L298, вы сможете управлять двигателем постоянного тока.

Двигатель постоянного тока (DC) является наиболее распространенным типом электродвигателей. Двигатели постоянного тока обычно имеют только два вывода, один положительный и один отрицательный. Если вы подключите эти два вывода напрямую к аккумулятору, двигатель начнет крутиться. Если же поменять полярность подаваемого напряжения, двигатель будет вращаться в противоположном направлении.

Чтобы управлять направлением вращения двигателя постоянного тока без переподключения питания к его выводам, вы можете использовать схему, называемую Н-мостом. Н-мост – это электронная схема, которая может управлять вращением двигателя в обоих направлениях. Н-мосты используются во множестве различных приложений, самым распространенным из которых является управление двигателями в роботах. Эта схема называется Н-мостом потому, что она использует четыре транзистора, подключенных таким образом, что схема выглядит как буква «Н».

Для сборки данной схемы вы можете использовать дискретные транзисторы, но в этом руководстве мы будем использовать микросхему Н-моста L298. L298 может управлять скоростью и направлением вращения двигателей постоянного тока и шаговых двигателей и может управлять двумя двигателями одновременно. Допустимый ток для каждого из двигателей составляет 2 ампера. Однако при таких токах вам будет необходимо использовать радиаторы.

Распиновка микросхемы L298 показана на рисунке ниже. Техническое описание L298 можно скачать здесь.

Для чего нужен диодный мост и как он работает

Диодный мост используется в качестве схемы выпрямления, преобразующей переменное напряжение в постоянное. Принцип его действия основан на односторонней проводимости — свойстве полупроводникового диода пропускать ток только в одном направлении. Простейшим выпрямителем может служить и одиночный диод.

При подобном включении нижняя (отрицательная) часть синусоиды «срезается». Такой способ имеет недостатки:

  • форма выходного напряжения далека от постоянной, требуется большой и громоздкий конденсатор в качестве сглаживающего фильтра;
  • мощность источника переменного тока используется максимум наполовину.

Ток через нагрузку повторяет форму выходного напряжения. Поэтому лучше использовать двухполупериодный выпрямитель в виде диодного моста. Если включить четыре диода по указанной схеме и подключить нагрузку, то при подаче на вход переменного напряжения блок будет работать так:

При положительном напряжении (верхняя часть синусоиды, красная стрелка) ток пойдет через диод VD2, нагрузку, VD3. При отрицательном (нижняя часть синусоиды, зеленая стрелка) через диод VD4, нагрузку, VD1. В итоге за один период ток дважды проходит через нагрузку в одном направлении.

Форма выходного напряжения гораздо ближе к прямой, хотя уровень пульсаций довольно высок. Мощность источника используется полностью.

Если имеется источник трехфазного напряжения необходимой амплитуды, можно сделать мост по такой схеме:

В нём на нагрузке будут складываться три тока, повторяющие форму выходного напряжения, со сдвигом фаз в 120 градусов:

Выходное напряжение будет огибать верхушки синусоид. Видно, что напряжение пульсирует гораздо меньше, чем в однофазной схеме, его форма более близка к прямой. В этом случае ёмкость сглаживающего фильтра будет минимальной.

И еще один вариант моста – управляемый. В нём два диода заменены тиристорами – электронными приборами, которые открываются при подаче сигнала на управляющий электрод. В открытом виде тиристоры ведут себя практически как обычные диоды. Схема принимает такой вид:

Сигналы включения подаются от схемы управления в согласованные моменты времени, отключение происходит в момент перехода напряжения через ноль. Потом напряжение усредняется на конденсаторе, и этим средним уровнем можно управлять.

  1. Небольшие сопротивления измеряются посредством прибора Кери Фотера. Можно узнать разницу между противодействиями больших значений.
  2. Еще один тип – делитель Кельвина-Варлея. Применяется в приборах лабораторного оборудования. Максимальная измеряющая способность, зафиксированная этим делителем напряжения, достигает 1,0*10-7.
  3. Мост Кельвина, который в некоторых странах называют именем Томсона, предназначен для замера неизвестных сопротивлений небольших величин (меньше 1 Ом). По принципу работы похож на одинарный мост Уинстона. Разница лишь в наличии дополнительного сопротивления, снижающего погрешности в измерении, которые появляются в результате падения напряжения в одном из плеч.
  4. Еще один тип – мост Максвелла. Измеряет низкодобротную индуктивность неизвестной величины.

Измерительные мосты переменного тока делят на 2 группы: двойные и одинарные. Одинарные имеют 4 плеча. В них 3 ветви создают цепь с 4 точками подключения.

Читать еще:  Электрическая схема однофазного асинхронного двигателя к однофазной сети

В диагонали моста есть электромагнитный гальванометр, показывающий равновесие. В другой диагонали моста действует источник постоянного питания. Измерения могут происходить с погрешностями, которые зависят от их диапазона. По мере роста сопротивления чувствительность прибора уменьшается.

Двойной мост называют шестиплечим. Его плечи – измеряемое сопротивление (Rx), резистор (Ro) и 2 пары дополнительных резисторов (Rl, R2, R3, R4).

H-мост управления двигателем

Легко заметить, что изменение направления тока приводит к изменению направления вращения двигателя. Вместо этих переключателей можно собрать H-мост на транзисторах и управлять ими с помощью микроконтроллера.

Как правило, для двигателей большой мощности H-мост строится на MOSFET транзисторах. Когда-то такие H-мосты были очень популярны по экономическим соображениям, поскольку транзисторы дешевле, чем микросхема. Их часто можно встретить в бюджетных игрушечных автомобилях с дистанционным управлением.

Однако на рынке уже не один год существуют специализированные микросхемы H-мостов. Они со временем становятся все дешевле и имеют больше возможностей и безопасности. Одной из таких простых микросхем является L293D.

Это простой драйвер электродвигателя, содержащий в себе два H-моста, имеет возможность управления двигателем путем ШИМ.

Назначения выводов драйвера L293D:

  • 1,2 EN, 3,4 EN – служат для управления сигналом ШИМ.
  • 1А, 2А, 3А, 4А – вход управления направлением вращения электродвигателя.
  • 1Y, 2Y, 3Y, 4Y – выходы питающие двигатель.
  • Vcc1 – вывод питания логики контроллера +5В
  • Vcc2 – вывод для питания двигателей от +4.5В до +36В.

То как происходит управление L293D показано в таблице ниже:

Когда на входе А и EN присутствует высокий уровень, то на выходе с тем же номером так же будет высокий уровень. Когда на входе A будет низкий и на EN высокий уровень, то на выходе мы получим низкое состояние. Подавая сигнал низкого уровня на EN, на выходе будет состояние высокого импеданса, в не зависимости от того какой сигнал будет на входе А.

Таким образом, мы можем контролировать направление движения тока, в результате чего у нас есть возможность изменять направление вращения электродвигателя.

Технические характеристики L293D:

  • Напряжение питания : +5В.
  • Напряжение питания двигателей: от +4.5 в до +36В.
  • Выходной ток: 600мА.
  • Максимальный выходной ток (в импульсе) 1,2А.
  • Рабочая температура от 0°C до 70°C.

Другой популярной микросхемой является L298. Она значительно мощнее, чем описанная ранее L293D. Микросхема L298 так же имеет в своем составе два H-моста и также поддерживает ШИМ.

Назначение выводов L298 очень похоже на L293D. Здесь так же есть два входа управления, входы EN и выходы на двигатель. Vss — это питание микросхемы, а Vs — это питание для двигателей.


Есть так же и различие, а именно выводы CURRENT SENSING, которые служат для измерения тока потребления двигателей. Эти выводы следует подключить к массе питания через небольшой резистор, примерно 0,5 Ом.
Ниже приведена схема подключения L298:

В данной схеме стоит обратить внимание на внешние диоды, подключенные к выводам электродвигателя. Они служат для отвода индукционных всплесков в двигателе, которые возникают во время торможения и изменения направления вращения. Их отсутствие может привести к повреждению микросхемы. В драйвере L293D эти диоды уже имеются внутри самой микросхемы.

Технические характеристики L298:

  • Напряжение питания :+5В.
  • Напряжение питания двигателей: до +46В.
  • Максимальный ток, потребляемый двигателями: 4A.

Следующая микросхема H-моста – эта TB6612, новый драйвер с очень хорошими характеристиками, набирающий все большую популярность.

Вы можете заметить, что все эти драйверы электродвигателей одинаковы в управлении, но в TB6612 выходы спарены, из-за большой мощности.
Максимальное напряжение питания TB6612 составляет 15В, а максимальный ток 1,2 А. При этом максимальный импульсный ток составляет 3,2A.

Исходный код программы

По умолчанию все необходимые заголовочные файлы подключаются автоматически самой средой ARDUINO IDE, она же конфигурирует сама и все регистры, необходимые для работы ШИМ, поэтому нам в программе уже не нужно заботиться об этих вещах. Все что нам нужно будет сделать – это определить на каком контакте мы будем использовать ШИМ.

То есть для использования ШИМ на нужном контакте нам необходимо сделать следующие вещи:

Читать еще:  Уровень масла в двигателе выше нормы причины

pinMode(ledPin, OUTPUT)
analogWrite(pin, value)
analogWriteResolution(neededresolutionnumber)

Сначала мы должны выбрать один из доступных 6 выходов (контактов) ШИМ. Потом необходимо установить этот контакт в режим на вывод данных.

После этого мы должны задействовать функции ШИМ на этом выходе используя функцию “ analogWrite(pin, value) ”. Здесь ‘pin’ обозначает номер контакта, на котором мы будем использовать ШИМ, в нашем случае это будет 3-й контакт.

Value в этой функции представляет собой цикл занятости (коэффициент заполнения) ШИМ, оно может принимать значения от 0 (всегда выключено) до 255 (всегда включено). Мы будем увеличивать и уменьшать это значение с помощью кнопок, присутствующих на схеме.

Плата Arduino UNO имеет максимальное разрешение (разрешающую способность) ШИМ, равную 8, что означает что value в функции analogWrite(pin, value) может принимать значения от 0 до 255. Но если в этом есть необходимость, мы можем уменьшать разрешение ШИМ используя функцию “ analogWriteResolution() ”, в скобках которой мы можем записать число в диапазоне 4-8, которое и будет определять разрешающую способность ШИМ платы Arduino UNO.

Переключатель на схеме служит для изменения направления вращения двигателя.

А теперь непосредственно сам код программы с комментариями.

Н-мост и схема работы для управления двигателями

В различных электронных схемах часто возникает необходимость менять полярность напряжения, прикладываемого к нагрузке, в процессе работы. Схемотехника таких устройств реализуется с помощью ключевых элементов. Ключи могут быть выполнены на переключателях, электромагнитных реле или полупроводниковых приборах. Н-мост на транзисторах позволяет с помощью управляющих сигналов переключать полярность напряжения поступающего на исполнительное устройство.

Что такое Н-мост

В различных электронных игрушках, некоторых бытовых приборах и робототехнике используются коллекторные электродвигатели постоянного тока, а также двухполярные шаговые двигатели. Часто для выполнения какого-либо алгоритма нужно с помощью электрического сигнала быстро поменять полярность питающего напряжения с тем, чтобы двигатель технического устройства стал вращаться в противоположную сторону. Так робот-пылесос, наткнувшись на стену, мгновенно включает реверс и задним ходом отъезжает от препятствия. Такой режим реализуется с помощью Н-моста. Схема Н-моста позволяет так же изменять скорость вращения электродвигателя. Для этого на один из двух ключей подаются импульсы от широтно-импульсного модулятора (ШИМ).

Схемой управления режимами двигателя является h-мост. Это несложная электронная схема, которая может быть выполнена на следующих элементах:

  • Биполярные транзисторы
  • Полевые транзисторы
  • Интегральные микросхемы

Основным элементом схемы является электронный ключ. Принципиальная схема моста напоминает латинскую букву «Н», отсюда название устройства. В схему входят 4 ключа расположенных попарно, слева и справа, а между ними включена нагрузка.

H-мост

На схеме видно, что переключатели должны включаться попарно и по диагонали. Когда включен 1 и 4 ключ, электродвигатель вращается по часовой стрелке. 2 и 3 ключи обеспечивают работу двигателя в противоположном направлении. При включении двух ключей по вертикали слева или справа произойдёт короткое замыкание. Каждая пара по горизонтали закорачивает обмотки двигателя и вращения не произойдёт. На следующем рисунке проиллюстрировано, что происходит, когда мы меняем положение переключателей:

Схема работы H-моста

Если мы заменем в схеме переключатели на транзисторы, то получим такой вот (крайне упрощенный) вариант:

H-мост

Для того чтобы исключить возможное короткое замыкание h-мост на транзисторах дополняется входной логикой, которая исключает появление короткого замыкания. В современных электронных устройствах мостовые схемы изменения полярности дополняются устройствами, обеспечивающими плавное и медленное торможение перед включением реверсного режима.

Н-мост на биполярных транзисторах

Транзисторы в ключевых схемах работают по принципу вентилей в режиме «открыт-закрыт», поэтому большая мощность на коллекторах не рассеивается, и тип применяемых транзисторов определяется, в основном, питающим напряжением. Несложный h-мост на биполярных транзисторах можно собрать самостоятельно на кремниевых полупроводниковых приборах разной проводимости.

H-мост на биполярных транзисторах

Такое устройство позволяет управлять электродвигателем постоянного тока небольшой мощности. Если использовать транзисторы КТ816 и КТ817 с индексом А, то напряжение питания не должно превышать 25 В. Аналогичные транзисторы с индексами Б или Г допускают работу с напряжением до 45 В и током не превышающим 3 А. Для корректной работы схемы транзисторы должны быть установлены на радиаторы. Диоды обеспечивают защиту мощных транзисторов от обратного тока. В качестве защитных диодов можно использовать КД105 или любые другие, рассчитанные на соответствующий ток.

Читать еще:  406 двигатель давление масла то есть то нет

Недостатком такой схемы является то, что нельзя подавать на оба входа высокий потенциал, так как открытие обоих ключей одновременно вызовет короткое замыкание источника питания. Для исключения этого в интегральных мостовых схемах предусматривается входная логика, полностью исключающая некорректную комбинацию входных сигналов.

Схему моста можно изменить, поставив в неё более мощные транзисторы.

Н-мост на полевых транзисторах

Кроме использования биполярных транзисторов в мостовых схемах управления питанием, можно использовать полевые (MOSFET) транзисторы. При выборе полупроводниковых элементов обычно учитывается напряжение, ток нагрузки и частота переключения ключей, при использовании широтно-импульсной модуляции. Когда полевой транзистор работает в ключевом режиме, у него присутствуют только два состояния – открыт и закрыт. Когда ключ открыт, то сопротивление канала ничтожно мало и соответствует резистору очень маленького номинала. При подборе полевых транзисторов для ключевых схем следует обращать внимание на этот параметр. Чем больше это значение, тем больше энергии теряется на транзисторе. При минимальном сопротивлении канала выше КПД моста и лучше его температурные характеристики.

Дополнительным негативным фактором является зависимость сопротивления канала от температуры. С увеличением температуры этот параметр заметно растёт, поэтому при использовании мощных полевых транзисторов следует предусмотреть соответствующие радиаторы или активные схемы охлаждения. Поскольку подбор полевых транзисторов для моста связан с определёнными сложностями, гораздо лучше использовать интегральные сборки. В каждой находится комплементарная пара из двух мощных MOSFET транзисторов, один из которых с P каналом, а другой с N каналом. Внутри корпуса также установлены демпферные диоды, предназначенные для защиты транзисторов.

В конструкции использованы следующие элементы:

  • VT 1,2 – IRF7307
  • DD 1 – CD4093
  • R 1=R 2= 100 ком

Интегральные микросхемы с Н-мостом

В ключах Н-моста желательно использовать комплементарные пары транзисторов разной проводимости, но с одинаковыми характеристиками. Этому условию в полной мере отвечают интегральные микросхемы, включающие в себя один, два или более h-мостов. Такие устройства широко применяются в электронных игрушках и робототехнике. Одной из самых простых и доступных микросхем является L293D. Она содержит два h-моста, которые позволяют управлять двумя электродвигателями и допускают управление от ШИМ контроллера. Микросхема имеет следующие характеристики:

  • Питание – + 5 В
  • Напряжение питания электромотора – + 4,5-36 В
  • Выходной номинальный ток – 500 мА
  • Ток в импульсе – 1,2 А

Микросхема L298 так же имеет в своём составе два h-моста, но гораздо большей мощности. Максимальное напряжение питания, подаваемое на двигатель, может достигать + 46 В, а максимальный ток соответствует 4,0 А. Н-мост TB6612FNG допускает подключение двух коллекторных двигателей или одного шагового. Ключи выполнены на MOSFET транзисторах и имеют защиту по превышению температуры, перенапряжению и короткому замыканию. Номинальный рабочий ток равен 1,2 А, а максимальный пиковый – 3,2 А. Максимальная частота широтно-импульсной модуляции не должна превышать 100 кГц.

Мостовые устройства управления электродвигателями часто называют драйверами. Драйверами так же называют микросхемы, только обеспечивающие управление мощными ключевыми каскадами. Так в схеме управления мощным электродвигателем используется драйвер HIP4082. Он обеспечивает управление ключами, собранными на дискретных элементах. В них используются MOSFET транзисторы IRF1405 с N-каналами. Компания Texas Instruments выпускает большое количество интегральных драйверов предназначенных для управления электродвигателями разных конструкций. К ним относятся:

  • Драйверы для шаговых двигателей – DRV8832, DRV8812, DRV8711
  • Драйверы для коллекторных двигателей – DRV8816, DRV8848, DRV8412/32
  • Драйверы для бесколлекторных двигателей – DRV10963, DRV11873, DRV8332

На рынке имеется большой выбор интегральных мостовых схем для управления любыми электродвигателями. Сделать конструкцию можно и самостоятельно, применив качественные дискретные элементы.

Защитный диод для индуктивной нагрузки

Каждый двигатель содержит проволочную обмотку (катушку) и, следовательно, в процессе управления двигателем на его выводах возникает всплеск ЭДС самоиндукции, которая может повредить транзисторы моста.

Чтобы решить эту проблему, вы можете использовать быстрые диоды типа Shottky или, если наши двигатели не являются особо мощными, просто обычные выпрямительные диоды, например 1N4007. Нужно иметь в виду, что выходы моста в процессе управления двигателем меняют свою полярность, поэтому необходимо использовать четыре диода вместо одного.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector