Toyota-navi.ru

АвтоКлуб Toyota
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое поршень в двигателе и зачем он

Всё про поршни двигателя машины

Поршень — деталь цилиндрической формы, совершающая возвратно-поступательное движение внутри цилиндра двигателя авто. Нужен для изменения давления газа в механическую работу, или наоборот — возвратно-поступательного движения в изменение давления. Т.е. он передаёт на шатун усилие, возникающее от давления газов и обеспечивает протекание всех тактов рабочего цикла.

Он имеет вид перевёрнутого стакана и состоит из днища, головки, направляющей части (юбки).

В бензиновых моторах применяются поршни с плоским днищем из-за простоты изготовления и меньшего нагрева при работе. Хотя на современных авто делают специальные выемки под клапаны. Чтобы при обрыве ремня ГРМ поршни и клапана не встретились и не повлекли серьёзный ремонт.

Поршень подвержен действию высоких температур и давлений. Он движется с высокой скоростью внутри цилиндра. Изначально для автомобильных двигателей их отливали из чугуна. С развитием технологий стали использовать алюминий, т.к. давал преимущества: рост оборотов и мощности, меньшие нагрузки на детали, лучшую теплоотдачу.

Мощность современных моторов выросла. Температура и давление в цилиндрах двигателей (особенно дизельных) стали такими, что алюминий подошёл к пределу прочности. Поэтому современные моторы оснащаются стальными поршнями, которые уверенно выдерживают возросшие нагрузки. Они легче алюминиевых за счет более тонких стенок и меньшей компрессионной высоты, т.е. расстояния от днища до оси алюминиевого пальца. А еще стальные поршни не литые, а сборные.

Экстремальные условия обуславливают материал изготовления поршней

Поршень эксплуатируется в экстремальных условиях, характерными чертами которых являются высокие: давление, инерционные нагрузки и температуры. Именно поэтому к основным требованиям, предъявляемым материалам для его изготовления относят:

    высокую механическую прочность;

незначительный коэффициент линейного расширения, антифрикционные свойства;

  • хорошую коррозионную устойчивость.
  • Требуемым параметрам соответствуют специальные алюминиевые сплавы, отличающиеся прочностью, термостойкостью и легкостью. Реже в изготовлении поршней используются серые чугуны и сплавы стали.

    Поршни могут быть:

  • коваными.
  • В первом варианте их изготовляют путем литья под давлением. Кованые изготовляются методом штамповки из алюминиевого сплава с небольшим добавлением кремния (в среднем, порядка 15 %), что значительно увеличивает их прочность и снижает степень расширения поршня в диапазоне рабочих температур.

    Из чего изготавливают цилиндры и поршни?

    Материалы, используемые при производстве деталей ЦПГ, должны обладать высокой механической прочностью, хорошей теплопроводностью, малой плотностью, незначительным коэффициентом линейного расширения, антифрикционными и антикоррозионными свойствами.

    Цилиндры изготавливают из чугуна или стали с различными присадками. Это нужно для того, чтобы детали могли выдержать высокие нагрузки. Сегодня блоки цилиндров чаще всего производят из алюминия, а внутренние части цилиндров – из стали, благодаря чему вес конструкции снижается.

    Поршни внутри цилиндра двигаются с высокой скоростью и подвержены воздействию высоких давлений и температур. Изначально для производства этих деталей использовался чугун, но с развитием технологий основным материалом для поршней стал алюминий. Это позволило обеспечить меньшую нагрузку на поршни, лучшую теплоотдачу и рост мощности ДВС.

    На современных автомобилях, особенно с дизельными двигателями, используются сборные стальные поршни. Они весят меньше алюминиевых, а за счет меньшей компрессионной высоты позволяют использовать шатуны большей длины, тем самым снижая боковые нагрузки в паре «цилиндр-поршень».

    Для производства поршневых колец используется высокопрочный серый чугун с добавлением хрома, молибдена, никеля или вольфрама. Эти материалы улучшают приработку элементов и обеспечивают их высокую износо- и термостойкость.

    Некоторые производители автокомпонентов для снижения потерь на трение покрывают боковую поверхность поршней специальными материалами на основе графита или дисульфида молибдена. Однако со временем заводское покрытие разрушается и ему требуется восстановление.

    Одним из самых эффективных средств для восстановления антифрикционного слоя или нанесения материала на новые поршни является покрытие поршней MODENGY для деталей ДВС. Состав на основе высокоочищенного дисульфида молибдена и графита имеет практичную аэрозольную упаковку с оптимальными параметрами распыления.

    Материал равномерно наносится на юбки поршней, не требует высоких температур для полимеризации и создает на поверхности сухую смазочную пленку, которая в течение длительного времени снижает износ и препятствует образованию задиров.

    Для подготовки поверхностей перед нанесением покрытия рекомендуется провести их обработку Специальным очистителем-активатором MODENGY. Он убирает все загрязнения с деталей и обеспечивает прочное сцепление покрытия с основанием.

    Содержание

    Поршень подразделяется на три части, выполняющие различные функции

    • днище
    • уплотняющая часть
    • направляющая часть (юбка)

    Для передачи усилия от поршня (или наоборот) может использоваться шток, либо кривошип, который соединяется с поршнем с помощью пальца. Другие способы передачи усилия используются реже. В некоторых случаях шток может играть роль направляющего устройства, в этом случае юбка не нужна.

    Поршень может быть односторонним или двухсторонним. В последнем случае поршень имеет два днища.

    Днище

    Форма днища зависит от выполняемой поршнем функции. К примеру, в двигателях внутреннего сгорания форма зависит от расположения свечей, форсунок, клапанов, конструкции двигателя и других факторов. При вогнутой форме днища образуется наиболее рациональная камера сгорания, но в ней более интенсивно происходит отложение нагара. При выпуклой форме днища увеличивается прочность поршня, но ухудшается форма камеры сгорания. В некоторых двухтактных двигателях днище поршня выполняется в виде выступа-отражателя для направленного движения продуктов сгорания при продувке. Расстояние от днища поршня до канавки первого компрессионного кольца называют огневым поясом поршня. В зависимости от материала, из которого сделан поршень, огневой пояс имеет минимально допустимую высоту, уменьшение которой может привести к прогару поршня вдоль наружной стенки, а также разрушению посадочного места верхнего компрессионного кольца.

    Читать еще:  Установка предпускового подогревателя двигателя своими руками калина

    Функции уплотнения, выполняемые поршневой группой, имеют большое значение для нормальной работы поршневых двигателей. О техническом состоянии двигателя судят по уплотняющей способности поршневой группы. Например, в автомобильных двигателях не допускается, чтобы расход масла из-за угара его вследствие избыточного проникновения (подсоса) в камеру сгорания превышал 3% от расхода топлива. При выгорании масла наблюдается повышенная дымность отработавших газов и двигатели снимаются с эксплуатации вне зависимости от удовлетворительности мощностных и других его показателей. [1]

    Уплотняющая часть

    Днище и уплотняющая часть образуют головку поршня. В уплотняющей части поршня располагаются компрессионные и маслосъёмные кольца. В некоторых конструкциях поршней из алюминиевых сплавов в его головку залит ободок из коррозионностойкого чугуна (нирезиста), в котором прорезана канавка для верхнего наиболее нагруженного компрессионного кольца. Нирезистовую вставку под верхнее поршневое кольцо имеют, в частности, поршни двигателей, выпускаемых ТМЗ (Тутаевский моторный завод). Благодаря этому значительно увеличивается износостойкость поршня. Кольцевые каналы для маслосъемных колец выполняются со сквозными отверстиями, через которые масло, снятое с зеркала цилиндра, поступает внутрь поршня и стекает в поддон картера двигателя.

    Направляющая часть

    Юбка поршня (тронк) является его направляющей частью при движении в цилиндре и имеет два прилива (бобышки) для установки поршневого пальца. Так как масса поршня у приливов оказывается большей, чем в других частях юбки, температурные деформации при нагреве в плоскости бобышек также будут наибольшими. Для снижения температурных напряжений поршня с двух сторон, где расположены бобышки, с поверхности юбки, удаляют металл на глубину 0,5-1,5 мм. Эти углубления, улучшающие смазывание поршня в цилиндре и препятствующие образованию задиров от температурных деформаций, называются «холодильниками». В нижней части юбки также может располагаться маслосъемное кольцо.

    Устройство поршня

    Стандартный поршень автомобильного двигателя состоит из трех основных частей: днища, поршневых колец и направляющей (юбки).

    Рассмотрим каждый компонент подробнее.

    Днище поршня

    Форма днища зависит от типа двигателя, особенностей камеры сгорания и многих других факторов. Поршень может иметь плоское, вогнутое или выпуклое днище.

    Детали с плоским днищем наиболее просты в производстве, используются как в бензиновых, так и дизельных двигателях вихрекамерного и предкамерного типа.

    Поршни с вогнутым днищем свойственны для дизельных двигателей. Они обеспечивает более эффективную работу камеры сгорания, однако способствуют большему образованию отложений при сгорании топлива.

    Выпуклая форма днища улучшает производительность поршня, но при этом снижает эффективность процесса сгорания топливной смеси в камере.

    Днище поршня принимает на себя основную термонагрузку, в связи с чем имеет самую большую, по сравнению с другими деталями, толщину: 7-9 мм в обычных бензиновых двигателях, 11 мм – в турбомоторах, 10-16 мм – в дизельных двигателях.

    Существуют также автомобили, в которых установлены поршни с толщиной днища меньше стандартной – например, в некоторых моделях Honda она составляет всего 5,5-6 мм.

    Днища некоторых поршней в целях увеличения прочности, снижения вероятности перегрева и прогорания подвергаются твердому анодированию: на верхний слой алюминия накладывается керамическое покрытие толщиной 8-12 мкм.

    Уплотняющая часть

    К уплотняющей части поршня относятся поршневые кольца, установленные в специальных канавках. В большинстве современных двигателей используется три кольца – одно маслосъемное и два компрессионных.

    Маслосъемные кольца, как следует из названия, предназначены для удаления излишков масла со стенок цилиндра и предотвращения их попадания в камеру сгорания. Для этих целей служат сквозные отверстия, расположенные по периметру кольца.

    Сквозь них масло поступает внутрь поршня, а затем отводится в поддон картера двигателя.

    Компрессионные кольца предотвращают попадание отработавших газов из камеры сгорания в картер. По форме они могут быть трапециевидными, коническими или бочкообразными. Некоторые виды колец оснащены пружинным расширителем.

    Наибольшие нагрузки воспринимает первое (верхнее) компрессионное кольцо, поэтому для увеличения ресурса данной детали ее канавку укрепляют при помощи стальной вставки.

    Диаметр уплотняющей части поршня меньше диаметра его направляющей части. Это связано с неодинаковым нагревом этих зон – в районе колец он больше. Минимальный диаметр жарового пояса позволяет избежать задиров и заклинивания колец в канавках.

    Качество колец имеет огромное значение для уплотнения поршня. В этом отношении чугунные маслосъемные кольца намного надежнее составных, так как при их установке возникает меньше ошибок.

    Направляющая часть

    Направляющая (тронковую) часть поршня называют юбкой. С внутренней стороны она имеет бобышки, в которых находится отверстие под поршневой палец.

    Нижняя кромка юбки предназначена для расточки и подгонки поршня. На ней имеется специальный буртик, с внутренней стороны которого в процессе механической обработки снимается часть металла.

    В местах отверстий под поршневой палец с наружной части юбки вырезаются специальные углубления, вследствие чего стенки этих зон не взаимодействуют со стенками цилиндра, образуя так называемые «холодильники».

    Стенки юбки предназначены для восприятия бокового давления. Естественно, что трение поршня о стенки цилиндра и нагрев обеих деталей при этом увеличивается.

    Читать еще:  Что нужно чтобы поставить двигатель машины на учет

    Чтобы обеспечить свободное перемещение поршня в цилиндре, между юбкой и стенками гильзы предусмотрен зазор. Его величина зависит от линейного расширения металла поршня и цилиндра при нормальной работе двигателя. При слишком маленьком зазоре возникает перегрев, грозящий образованием задиров на поверхностях и заклиниванием поршня в цилиндре. Большой зазор также не рекомендован, так как поршень при этом не выполняет своих уплотняющих свойств.

    Многие автопроизводители еще на этапе производства поршней наносят на юбки специальные антифрикционные покрытия. Это позволяет защитить их поверхности от преждевременного износа и облегчить приработку.

    В последнее время большую популярность не только в промышленности, но и в частном использовании приобрело антифрикционное твердосмазочное покрытие . Оно предназначено не только для поршней, но и для других деталей двигателя: коренных подшипников коленчатого вала, втулок пальцев, распредвалов, дроссельной заслонки.

    Данное покрытие эффективно снижает износ и трение, предотвращает скачкообразное движение сопряженных поверхностей, появление на них задиров и заклинивание поршня в цилиндре.

    Средство устойчиво к длительному воздействию моторного масла, сохраняет работоспособность двигателя в режиме масляного голодания.

    Полимеризация покрытия MODENGY Для деталей ДВС возможна как при комнатной температуре (за 12 часов), так и при нагреве до +200 °С (за 20 минут).

    Удобная аэрозольная упаковка с тщательно настроенными параметрами распыления упрощает процесс нанесения состава.

    Перед использованием покрытия производитель рекомендует провести предварительную подготовку деталей Специальным очистителем-активатором MODENGY. Это гарантирует отличную адгезию материала и его долговременную работу.

    MODENGY Для деталей ДВС и Специальный очиститель-активатор MODENGY доступны в одном наборе. Поэтапное использование этих средств не требует особых навыков и дополнительного оборудования.

    Поршень двигателя внутреннего сгорания: технология упрочнения и новейшие достижения

    Современные поршневые двигатели внутреннего сгорания — крайне сложные системы, в состав которых входит большое количество элементов. Один из них — поршень, наиболее важная и специфическая деталь в современных двигателях. Для того, чтобы выдерживать значительные механические нагрузки и тепловые удары, поршень должен быть одновременно и легким, и прочным.

    О задачах, которые приходится решать при конструировании и производстве поршней, а также о современных технологиях их упрочнения рассказывает основатель проекта ZENTORN (компания-резидент Инновационного центра “Сколково”), Дмитрий Лебедев.

    Почему поршень настолько важен?

    Как и говорилось выше, он должен быть легким и прочным, чтобы выдерживать все расчетные нагрузки. Кроме того, поршень должен обладать одновременно высокой термоциклической стойкостью основных рабочих поверхностей, износостойкостью и низким трением тронковой части при минимально возможном зазоре в цилиндре.

    Зачем? Это очень важно для герметизации камеры сгорания топливно-воздушной смеси, с тем, чтобы избежать прорыва газов из камеры сгорания в картер, а также поступления масла в обратном направлении. В идеальном варианте расход масла должен быть минимальным, а детали двигателя должны работать в режиме жидкостного трения.

    В большинстве случаев причиной выхода из строя ДВС является износ элементов:

    • В бензиновом двигателе основные повреждения получает поршень из-за высокой температуры его нагрева и резких перепадов температур. При протекании рабочего процесса происходит снижение предела прочности материала.
    • В дизельном двигателе износу подвергаются и детали цилиндро-поршневой группы (ЦПГ), и камера внутреннего сгорания. Причиной служат переменные напряжения, вызванные воздействием переменного давления газов в цилиндре в течение рабочего цикла.
    • Низкочастотные колебания температуры поршня, связанные со сменой режимов работы двигателя; высокочастотные циклические термические колебания, обусловленные изменением температуры материала в поверхностном слое камеры сгорания в течение каждого рабочего цикла.

    Из-за разрушения элементов проявляются три основные проблемы: падает мощность двигателя, увеличивается расход горючего и смазочных материалов, возрастает объем выбрасываемых вредных газов.

    Неслучайно поршень является центром концентрации технических новшеств, которые заложены в конструкцию двигателя. В последние годы автопроизводители идут по пути оптимизации конструкции поршня и уменьшение его массы для снижения инерционности — активнее используют поршни без вставок и пазов. Это объясняется тем, что автомобильные двигатели последнего поколения часто оснащаются алюминиевым блоком цилиндров. Соответственно, поршни понадобилось облегчить без ухудшения их термозащитных, прочностных и других эксплуатационных характеристик.

    Кроме того, были разработаны и эффективные методы получения заготовок поршней, включая штамповку (ковку) и «жидкую» штамповку. Все это дало возможность усовершенствовать поршни и технологию их производства.

    Методы упрочнения поверхности поршней

    Существует ряд методов, один из них — технология электрического осаждения на поверхности металлов электрохимических покрытий с применением различных композиций. Метод осаждения состоит в следующем: из раствора электролита на поверхность днища поршня осаждаются неметаллические включения (бориды, сульфиды, карбиды, оксиды и т.д). Благодаря атомарному воздействию на поверхностные слои алюминия, прочностные характеристики полученного пленочного покрытия превышает твердость основного металла, что повышает термостойкость и прочностные характеристики.

    Перспективным методом упрочнения является микродуговое оксидирование (МДО). Он заключается в формировании в поверхностных слоях группы вентильных металлов керамических покрытий с уникальным комплексом свойств, значительно превосходящих по своим термоизоляционным и прочностным характеристикам основной металл. Отличительной особенностью процесса в появлении на границе металл-электролит микроплазменных разрядов – плазмохимическом и термическом воздействии.

    Технология ZENTORN: применение стэка технологий

    Когда резервы свойств материалов практически исчерпаны, а эксплуатационные потребности в увеличении литровой мощности и нагрузки на элементы цилиндропоршневой группы неуклонно растут, возникает необходимость решения комплексной задачи: повышения эксплуатационных характеристик без изменений конструкции двигателя.

    Читать еще:  Асинхронный двигатель с фазным ротором пусковые характеристики

    Результатом решения технической задачи группой разработчиков технологии «ZENTORN» является модель поршневого ДВС со штампованным поршнем с нирезистовой вставкой и двухслойным термобарьерным керамическим покрытием.

    Был применен стэк технологий:

    • Метод микродугового оксидирования за счет поверхностного упрочнения сплавов, который позволил достичь увеличения термоциклической стойкости и обеспечить тепловую динамическую защиту камеры сгорания ДВС (дна поршня и сферы головки цилиндра).
    • Для уменьшения износа канавки первого компрессионного кольца при помощи изотермической штамповки и порошковой металлургии была изготовлена вставки из чугуна (нирезиста), что уменьшило износ в паре трения: поршень-компрессионное кольцо. Получаемые заготовки характеризуются повышенными механическими свойствами, хорошей проработкой микроструктуры и минимальными припусками.

    Технический эффект от использования разработки:

    • повышение температуры в камере сгорания;
    • увеличение полноты сгорания топлива;
    • снижение уровня выбросов угарного газа (СО), углекислого газа (СО2) и углеводородов в окружающую среду (достигнута конверсия углеводородов до 40% для бензиновых двигателей);
    • уменьшение тепловой нагрузки на систему охлаждения и другие детали двигателя (предельная термостойкость модификационного слоя составляет до 490 С в рабочем режиме, тепловой удар — до 2600 С, теплоизоляция материала подложки — до 1 Вт*К/М);
    • увеличение КПД ДВС /возможно увеличение до 20% в форсированном режиме;
    • повышение надежности, износостойкого и эффективности работы штампованных поршней ДВС, твердость модификационного слоя составляет— до 2500 HV по Викерсу;
    • снижение общего веса и инерционности двигателя, по сравнению с двигателями со стальными и составными поршнями.

    Эффективность технологии была проверена на серийном шестицилиндровом дизельном двигателе. Также были подтверждены улучшенные технико-эксплуатационные характеристики. На испытаниях двигатель форсировали до максимального давления рабочего процесса (до 170 кгс/см²). Это позволило получить прирост мощности двигателя 21% в сравнении с базовым (540 л.с.) без снижения степени сжатия. При этом двигатель остался в работоспособном состоянии.

    Что скажут металурги

    Так как деталь работает в невыносимых условиях, то к металлам, для его изготовления, предъявляются достаточно жесткие требования:

    • для уменьшения инерционных нагрузок у материала должен бить малый удельный вес при достаточной прочности;
    • малый коэффициент температурного расширения;
    • сохранение физических свойств (прочность) при повышенных температурах;
    • значительная теплопроводность и теплоёмкость;
    • минимальный коэффициент трения в паре с материалом стенки цилиндра;
    • значительная сопротивляемость износу;
    • отсутствие усталостного разрушения материала под воздействием нагрузок;
    • низкая цена, общедоступность и легкость механической и других видов обработки в процессе производства.

    Понятно, что металла, полностью соответствующего перечисленным требованиям, просто не существует.

    Поэтому для массовых автомобильных двигателей поршни изготавливаются в основном из двух материалов – чугуна и сплавов алюминия, а если быть точным, то из силуминовых сплавов, содержащих алюминий и кремний.

    Чугунный вариант

    У чугуна много плюсов, он твёрд, хорошо переносит повышенные температуры, отличается оптимальной сопротивляемостью к износу, имеет низкий коэффициент трения (пара чугун – чугун). И коэффициент температурного расширения у него ниже чем у алюминиевого поршня.

    Но есть и недостатки: низкая теплопроводность, из-за чего температура днища у чугунного поршня больше чем у алюминиевого аналога.

    Но основной недостаток чугуна ‒ значительная плотность, а значит вес. Для увеличения мощности и эффективности двигателя конструкторы обычно повышают обороты, но тяжелые чугунные поршни не позволяют это делать по причине высоких инерционных нагрузок.

    Поэтому для современных автомобильных двигателей, как бензиновых, так и дизельных, отливают алюминиевые поршни.

    Алюминиевый вариант

    Алюминий имеет значительно меньший вес нежели чугун, но так как он мягче, толщину стенок поршня приходится увеличивать, в результате вес поршня становится легче всего лишь на 30 – 40 процентов по отношению к чугунному.

    Коме того у алюминия повышенный температурный коэффициент расширения, поэтому в тело детали приходится вплавлять термостабилизирующие пластины из стали, и делать увеличенные зазоры.

    У алюминия довольно малый коэффициент трения (пара: алюминий – чугун), что хорошо для работы алюминиевых поршней в двигателях с чугунным блоком цилиндров или чугунными гильзами.

    На современных двигателях немецких марок – Ауди, Фольксваген, Мерседес нет чугунных гильз. Алюминиевые цилиндры там обработаны специальным способом, так что поверхность стенок получается очень твёрдая и имеет сопротивление износу даже выше чем при установке чугунных гильз.

    А чтобы уменьшить трение в паре алюминий – алюминий, проводится железнение поверхности юбки. Таким образом отказ от чугунных гильз намного снижает вес блока цилиндров.

    В кремнеалюминиевые сплавы, из которых делают поршни основной массы автомобильных двигателей, для улучшения показателей добавляют медь, никель и другие металлы.

    Поршни серийных автомобилей производятся методом литья, а на форсированных двигателях применяют изделия, изготовленные методом горячей штамповки. Это улучшает структуру материала ‒ увеличивается прочность и устойчивость к износу. Правда, в штампованный вариант невозможно вмонтировать стальные терморегулирующие пластины.

    Вот пожалуй и всё. Вами получен необходимый минимум знаний, как выглядит поршень, его конструкции и условиях работы.

    Осталось поделится этой информацией с друзьями в соц.сетях, пригласить их на рюмочку чая и в домашней, непринужденной обстановке пригласить их пополнить ряды читателей нашего блога.

    А еще вам будет интересно знать про Шатун и Коленчатый вал. Дерзайте, жмите на ссылку!

    Ссылка на основную публикацию
    ВсеИнструменты
    Adblock
    detector