Toyota-navi.ru

АвтоКлуб Toyota
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое тепловой двигатель приведите примеры тепловых двигателей

Значение слова «двигатель»

ДВИ́ГАТЕЛЬ, -я, м.

1. Машина, превращающая какой-л. вид энергии в механическую энергию. Паровой двигатель. Двигатель внутреннего сгорания. Реактивный двигатель. Двигатель механизмов экскаватора. Двигатель бурового станка.

2. чего. Сила, побуждающая к чему-л., содействующая росту, развитию чего-л. — Я понимаю науку как могущественный двигатель прогресса. Эртель, Гарденины.

Источник (печатная версия): Словарь русского языка: В 4-х т. / РАН, Ин-т лингвистич. исследований; Под ред. А. П. Евгеньевой. — 4-е изд., стер. — М.: Рус. яз.; Полиграфресурсы, 1999; (электронная версия): Фундаментальная электронная библиотека

  • Дви́гатель — устройство, преобразующее какой-либо вид энергии в механическую работу. Термин мотор заимствован в первой половине XIX века из немецкого языка (нем. Motor — двигатель) и преимущественно им называют электрические двигатели и двигатели внутреннего сгорания.

Двигатели подразделяют на первичные и вторичные. К первичным относят непосредственно преобразующие природные энергетические ресурсы в механическую работу, а ко вторичным — преобразующие энергию, выработанную или накопленную другими источниками.

К первичным двигателям (ПД) относятся ветряное колесо, использующее силу ветра, водяное колесо и гиревой механизм — их приводит в действие сила гравитации (падающая вода и сила притяжения), тепловые двигатели — в них химическая энергия топлива или ядерная энергия преобразуются в другие виды энергии. Ко вторичным двигателям (ВД) относятся электрические, пневматические и гидравлические двигатели.

ДВИ’ГАТЕЛЬ, я, м. 1. Машина, приводящая что-н. в движение; механизм, преобразующий какой-н. вид энергии в механическую работу (тех.). Д. внутреннего сгорания. Электрический д. 2. Сила, способствующая прогрессу в какой-н. области (книжн.). Народное образование является двигателем науки и культуры.

Источник: «Толковый словарь русского языка» под редакцией Д. Н. Ушакова (1935-1940); (электронная версия): Фундаментальная электронная библиотека

дви́гатель

1. техн. устройство, преобразующее какой-либо вид энергии (химическую, электрическую) в механическое движение ◆ Авиационные моторы могут давать в рабочих цилиндрах до 20 и более взрывов в секунду. Известен даже двигатель с сотнею оборотов, или 50 взрывами в секунду. Циолковский, «Звездолёт», 1932 г.

2. перен. внутренний механизм, движущая сила явления; то, что способствует его развитию и активности ◆ Падёт на грудь заботы камень, // Свободу рук скуёт нужда, // И гаснет вдохновенья пламень, // Могучий двигатель труда. И. С. Никитин, «Бывают светлые мгновенья…», 1851 г. ◆ Лень — двигатель прогресса.

Фразеологизмы и устойчивые сочетания

  • автомобильный двигатель
  • вечный двигатель
  • двигатель внутреннего сгорания
  • двигатель прогресса
  • компрессорный двигатель
  • плазменный ракетный двигатель
  • ракетный двигатель
  • термоядерный ракетный двигатель
  • электрический ракетный двигатель
  • ядерный ракетный двигатель

Делаем Карту слов лучше вместе

Привет! Меня зовут Лампобот, я компьютерная программа, которая помогает делать Карту слов. Я отлично умею считать, но пока плохо понимаю, как устроен ваш мир. Помоги мне разобраться!

Спасибо! Я обязательно научусь отличать широко распространённые слова от узкоспециальных.

Насколько понятно значение слова нирвана (существительное):

Теплота — один из способов передачи энергии

Энергия, которую получает или теряет тело в процессе теплообмена с окружающей средой, называется коли́чеством теплоты́ или просто теплотой.

В строгом смысле теплота представляет собой один из способов передачи энергии, и физический смысл имеет лишь количество энергии, переданное системе, но слово «тепло-» входит в такие устоявшиеся научные понятия, как поток тепла, теплоёмкость, теплота фазового перехода, теплота химической реакции, теплопроводность и пр. Поэтому там, где такое словоупотребление не вводит в заблуждение, понятия «теплота» и «количество теплоты» синонимичны. Однако этими терминами можно пользоваться только при условии, что им дано точное определение, и ни в коем случае «количество теплоты» нельзя относить к числу первоначальных понятий, не требующих определения. Во избежание ошибок под понятием «теплота» следует понимать именно способ передачи энергии, а количество переданной этим способом энергии обозначают понятием «количество теплоты». Рекомендуется избегать такого термина, как «тепловая энергия».

Теплота — это кинетическая часть внутренней энергии вещества, определяемая интенсивным хаотическим движением молекул и атомов, из которых это вещество состоит. Мерой интенсивности движения молекул является температура. Количество теплоты, которым обладает тело при данной температуре, зависит от его массы; например, при одной и той же температуре в большой чашке с водой заключается больше теплоты, чем в маленькой, а в ведре с холодной водой его может быть больше, чем в чашке с горячей водой (хотя температура воды в ведре и ниже).

Теплота представляет собой одну из форм энергии, а поэтому должна измеряться в единицах энергии. В международной системе СИ единицей энергии является джоуль (Дж). Допускается также применение внесистемной единицы количества теплоты — калории: международная калория равна 4,1868 Дж.

Паровые установки для выработки электро- и тепловой энергии

Исторически под паровой машиной понимали работающий на водяном паре тепловой двигатель поршневого типа, а когда были изобретены паровые турбины, подобные двигатели часто стали называть турбомашинами.

Дешевые виды местного твердого топлива из биомассы (дрова, древесные пеллеты, брикеты, щепа, опилки) используются для генерации электроэнергии или когенерации, для чего разработаны несколько технологий. Основные:

  • газификация — получение низкокалорийного горючего (генераторного) газа с его последующим использованием в газопоршневом двигателе, приводящем в действие электрогенератор;
  • сжигание твердого топлива в паровом котле и использование полученного пара для работы паровой турбины;
  • сжигание твердого топлива в паровом котле и использование пара для работы поршневого парового двигателя (классической паровой машины или парового поршневого двигателя).


Паровой двигатель Spilling

Читать еще:  Щелкает в двигателе 409 двигатель что может быть


Газовый детандер Spilling

Главным достоинством современных паровых поршневых двигателей (машин) по сравнению с маломощными (особенно одноступенчатыми) паровыми турбинами является меньший удельный расход пара при равных параметрах давления и температуры пара на входе и выходе и при одинаковой мощности паровой машины и паровой турбины. К плюсам классических паровых машин также надо отнести, по сути, постоянный удельный расход пара при изменении нагрузки в широких пределах (в отличие от двигателей внутреннего сгорания — ДВС) при постоянной частоте вращения (работе на синхронный электрогенератор).

А теперь сравним паропоршневые установки (ППУ) с газопоршневыми (ГПУ). Для работы ГПУ в качестве топлива используется не только природный газ, но и с недавнего времени биогаз и генераторный газ, полученный в результате газификации биомассы. При работе классического поршневого двигателя на генераторном газе мощность двигателя падает до 60%. Но если сравнивать с классической паровой машиной, для работы которой используется водяной пар, то, согласно термодинамическому циклу Карно, его экономичность выше за счет того, что температура продуктов сгорания в ГПУ выше температуры пара, ограниченной теплостойкостью материалов парового котла. Однако при работе ГПУ горючий газ высокой температуры необходимо охлаждать перед подачей в цилиндр газопоршневого двигателя, а это приводит к сбросу во внешнюю среду около 20% теплоты сгорания твердого топлива и делает ГПУ неконкурентоспособным классической паровой машине. Принципиальным отличием паропоршневых двигателей от газопоршневых является наличие у первых накопителя энергии — парогенератора (парового котла), который играет роль пароводяного аккумулятора. Большое значение имеет и стабильность рабочего тела (пара). Отсюда следует, что кратковременные остановки котла не приведут к немедленной остановке самой паровой машины. Чего не скажешь о газопоршневом двигателе, в котором при загрузке газогенератора топливом возможно изменение состава газа, а это может привести к остановке двигателя. Существенное преимущество паровых двигателей заключается также в том, что для работы специализированных паровых котлов можно использовать биомассу (щепу или дрова) естественной влажности, а для газогенераторных установок влажность сырья, как правило, не должна превышать 20%. К тому же ГПУ требует более тщательного ухода, в отличие от паропоршневого двигателя. Преимуществами ППУ перед ГПУ и ДВС являются высокая выносливость и долговечность, простота обслуживания и ремонта и возможность работы, по сути, на любом виде дешевого местного твердого топлива. Последнее условие важно, потому что обеспечивает возможность широкого использования топливных ресурсов на местах и независимость от привозного топлива (к примеру, от топлива так называемого северного завоза в России).

Выше мы сравнивали паровые машины с газопоршневыми двигателями, которые работают на газифицированной биомассе. Понятно, что при работе ГПУ на природном газе при генерации только электроэнергии их преимущество неоспоримо. Однако при когенерации расклад не в пользу ГПУ; утилизировать тепловую энергию выхлопных газов значительно сложнее, чем тепловую энергию выхлопа паровой машины, т. к. коэффициент теплоотдачи конденсирующегося пара в теплообменнике в десятки раз выше коэффициента выхлопного газа ГПУ. Паровая машина экологичнее за счет меньшего объема выбросов NO и CO. Работающие паровые двигатели замкнутого цикла менее шумные, чем ГПУ и ДВС. Паровая машина вполне может конкурировать и с паровой турбиной мощностью 1000-2500 л. с. Конечно, по размерам и весу паровые машины больше в сравнении и превосходят паровые турбины, но за счет меньшей частоты вращения вала ППУ нет необходимости устанавливать редуктор. Ведутся и разработки компактных поршневых паровых двигателей. Например, компания из США Cyclone Power Technologies Inc. разработала паропоршневой двигатель со звездообразным расположением цилиндров мощностью 75 кВт, КПД 31,5% — по аналогии с бензиновыми авиационными моторами, которые используются до сих пор на труженике советской и российской авиации — знаменитом биплане Ан-2.

Использование паровых машин

За рубежом в малой энергетике (мини-ТЭС) вместо малых паровых турбин успешно используются паровые машины, или, как сегодня принято говорить, паропоршневые (паровые) моторы или двигатели. Основной отличительный признак паропоршневых моторов от паровых машин — иной тип парораспределения. Паропоршневые моторы предназначены для работы с однократным расширением пара: пар из котла поступает параллельно во все цилиндры, подобно тому как поступает топливно-воздушная смесь в цилиндры ДВС. А в классических паровых машинах пар проходит через все цилиндры последовательно и расширяется многократно.

Мировую известность получили немецкие паровые моторы фирмы Spilling. Это одноступенчатые поршневые паровые машины противодавленческого типа с системой золотникового расширения пара, отличающиеся от других современных паровых машин, которые работают по многоступенчатому принципу. К сожалению, у модельного ряда паровых машин Spilling очень узкий диапазон мощности: от 100 кВт до 1,2 мВт. Но ресурс у них довольно большой, и в последние годы компания-производитель предлагает их на российском рынке для установки на мини-ТЭС, работающих на биотопливе, на производствах, где есть возможность и необходимость редуцирования пара с расходом от 2,5 т/ч и на установках для утилизации отходов (ТБО, ТКО и др.). Компания Spilling поставляет паропоршневой двигатель в сборе с электрогенератором как готовый к работе агрегат с системой управления, автоматизации и программным обеспечением. Такой двигатель может также работать на природном газе либо биогазе в качестве детандера. Стоимость 1 кВт установочной электрической мощности при расчетах можно принять от 1500 евро FCA. Основные технические данные паропоршневых двигателей Spilling: электрическая мощность 100-1200 кВт; частота вращения — 750, 900 и 1000 об/мин; давление пара на входе — 4-60 бар, на выхлопе — 0,2-15 бар; температура насыщения пара — до 480°С. Для многих двигателей Spilling в качестве топлива используют биомассу, в первую очередь древесную. Например, на одном из деревообрабатывающих предприятий в Африке установлен трехцилиндровый одноступенчатый паропоршневой двигатель Spilling электрической мощностью 437 кВт с давлением пара на входе 9 бар и на выхлопе 0,5 бар. Отходящий пар используется для обеспечения работы сушильной камеры. После ввода в эксплуатацию этого двигателя предприятие обеспечило себя дешевой электро- и тепловой энергией и, что особенно важно, обрело независимость от поставок электроэнергии из общей сети.

Читать еще:  В каком тепловом двигателе при совершении работы

В числе других европейских производителей паропоршневых двигателей можно назвать чешскую компанию Tenza s. a., которая предлагает паровые двигатели мощностью от 10 до 120 кВт, и шведскую компанию Energiprojekt i Sverige AB, которая производит паровые двигатели мощностью от 500 до 1000 кВт с давлением пара на входе 30-60 бар и с заявленным КПД 25-30% (машины работают по термодинамическому циклу Ренкина с регенерацией и полезным использованием теплоты конденсации пара). Австрийская компания Foerdertechnik GmbH производит когенерационные паровые машины электрической мощностью 150 и 300 кВт и тепловой — 110 и 220 кВт соответственно, в топках паровых котлов которых можно сжигать биомассу, в частности щепу. Максимальная температура пара — 350°С, давление — 32 бар, паропроизводительность 200 кг/ч. Но стоимость этих машин, конечно, очень высокая — 280 тыс. и 480 тыс. евро. При такой стоимости эти «золотые» машины можно использовать только в некоторых европейских странах (Австрии, ФРГ и др.), где реализуются масштабные программы поддержки и субсидий ВИЭ и гарантируется оплата генерируемой электроэнергии по «зеленому» тарифу в течение продолжительного времени (до 20 лет). Поскольку в России о таких тепличных условиях можно только мечтать, то ориентироваться нужно в первую очередь на отечественных и азиатских (КНР, Тайвань, Вьетнам и др.) производителей и разработчиков оборудования. В мире производят сегодня и так называемые паровинтовые машины, которые в большей степени можно отнести к категории турбин, только ротор у этих машин не с лопатками, как у классических турбин, а в виде винта Архимеда — в основном цилиндрической или конусно-винтовой формы.

Первый отечественный паропоршневой мотор был спроектирован в Московском авиационном институте (МАИ) в 1936 году и предназначался для силовой установки экспериментального самолета. Двигатель работал на перегретом паре с давлением 6 МПа и температурой 380°С и на оборотах до 1800 об/мин.

В современной России нужно выделить научную группу «Промтеплоэнергетика» МАИ, которая предлагает довольно оригинальное решение вопроса экономически целесообразного применения паропоршневых машин в малой и децентрализованной энергетике России. Разработчики предлагают создавать паропоршневые двигатели на базе серийно выпускаемых дизельных поршневых двигателей. В конструкции ДВС сохраняется почти весь механизм газораспределения, который в ППУ становится механизмом парораспределения, также сохраняется кривошипно-шатунный механизм. Подобный подход обеспечивает низкую стоимость парового двигателя, в отличие от зарубежных аналогов, благодаря тому, что в производстве используются серийные автомобильные двигатели и запчасти к ним. Кстати, понятие «паропоршневые двигатели» впервые было введено в 2003 году именно научной группой «Промтеплоэнергетика» МАИ.

Где использовать паровые машины эффективно?

В качестве объектов, энергетическую эффективность которых можно повысить при использовании современных паровых машин, могут выступать:

  • промышленные и муниципальные котельные с паровыми котлами (паровая машина для привода электрогенератора);
  • паросиловые мини-теплоэлектроцентрали (мини-ТЭЦ), где паровую машину целесообразно устанавливать вместо маломощных паровых лопаточных и винтовых турбин, особенно если электрическая мощность последних до 1,2 МВт и они изготовлены в одноступенчатом варианте или же в многоступенчатом, но без промежуточного отбора пара;
  • технологические производственные установки на предприятиях, где по условиям реализации основных процессов выпуска продукции есть возможность с помощью парового котла-утилизатора использовать сбросное тепло (например, в металлургии подобными установками могут выступать крупные сталеплавильные печи, а в стекольной промышленности — печи для варки стекла, на цементных, консервных и маслоэкстракционных, ликероводочных заводах и во многих других отраслях промышленности). Использование для этого технологии ORC (органического цикла Ренкина) — более дорогое решение, учитывая и то, что модули ORC в России не производятся.

Технологические решения для мини-ТЭС — конденсационных мини-электростанций (мини-КЭС) и мини-ТЭЦ — с использованием современных паровых машин принципиально схожи с известными, реализуемыми на паротурбинных мини-ТЭС. Это комбинированное производство электрической и тепловой энергии (когенерация на мини-ТЭЦ, в т. ч. создаваемых на базе котельных с паровыми котлами) либо так называемая тригенерация (см. рис. 1), т. е. выработка одновременно трех видов энергии (электрической, тепловой и холодильной). В качестве холодопроизводящего оборудования при тригенерации на паросиловых мини-ТЭС используются абсорбционные холодильные машины, для работы которых вполне достаточно отработавшего в паровом двигателе водяного пара. Такой вариант значительно экономичнее, чем выработка холода с помощью электрических кондиционеров.

В качестве заключения

Паропоршневые мини-ТЭЦ, работающие на биомассе, энергоэффективнее паротурбинных, газопоршневых (при работе на генераторном газе, полученном путем газификации биомассы) и дизельных. В паропоршневых мини-ТЭЦ удельный расход пара на выработку электроэнергии в 1,3-1,5 раза меньше, чем в паротурбинных мини-ТЭЦ, особенно при мощности 1200-1500 кВт. Современные паровые поршневые машины вполне могут использоваться в децентрализованной энергетике России. Применяя местные альтернативные виды топлива, в основном древесную биомассу, можно успешно заменить во многих регионах дизель-генераторы паровыми машинами (паропоршневыми установками) и дополнительно получать тепловую энергию, в результате отказаться от северных завозов угля и дизтоплива. Применение ППУ может способствовать энергосбережению при эксплуатации технологических и энергетических установок, в частности тех, у которых при работе выделяется сбросное тепло в виде выхлопных или дымовых газов.

Читать еще:  Холодный двигатель не держит холостые обороты инжектор

Сергей ПЕРЕДЕРИЙ, Германия,
s.perederi@eko-pellethandel.de

В статье использованы некоторые материалы научной группы «Промтеплоэнергетика» МАИ и кафедры «Атомная и тепловая энергетика» Санкт-Петербургского политехнического университета им. Петра Великого

Признаки больших тепловых зазоров клапанов двигателя автомобиля

Большие (увеличенные больше нормы) тепловые зазоры в клапанном механизме двигателя автомобиля приводят к целому ряду проблем в его работе.

На примере карбюраторного двигателя 21083 автомобилей ВАЗ 21083, 21093, 21099 определим по каким признакам можно самостоятельно определить, что зазоры клапанов больше чем требуется.

Признаки больших тепловых зазоров клапанов двигателя 21083

— Клапана стучат

Частый металлический дробный стук под клапанной крышкой во время работы двигателя на холостом ходу — признак наступивших проблем с клапанами. В большинстве случаев стук клапанов появляется при увеличенных тепловых зазорах между торцом стержня клапана и толкателем. Происходит это либо из-за неправильной регулировки теплового зазора, либо от стирания торцов клапанов на двигателях с большим пробегом или с плохим маслом. Стучать могут как все (или почти все) клапана, так и один или пара.

Устройство клапанного механизма двигателя 21083

Иногда клапан начинает стучать если он погнут и подвисает в направляющей втулке. В таком случае придется снимать и разбирать головку блока чтобы заменить его.

Практически всегда стук клапанов сопровождается неустойчивыми оборотами холостого хода и снижением мощности и приемистости двигателя, так как ухудшается наполняемость и вентиляция камер сгорания из-за уменьшения зазора между тарелкой и седлом клапана.

В ряде случаев за стук клапанов можно принять металлический частый звук от детонации в камерах сгорания двигателя («пальцы» стучат).

— Двигатель троит

Если тепловые зазоры клапанов слишком велики, клапан не до конца открывается, зазор между тарелкой клапана и посадочным гнездом в головке блока уменьшается, наполняемость и вентиляция камер сгорания ухудшается. Создается ситуация, когда и поджигать бывает особо не чего (заряд топливной смеси, попавший в камеру сгорания слишком мал), вдобавок газы от горения удаляются плохо и нарушают состав смеси. Начинаются перебои в работе двигателя, цилиндры, то работают, то нет. Двигатель троит, теряет мощность и приемистость, обороты холостого хода не удается отрегулировать вращением винтов «качества» и «количества» карбюратора.

Двигатель не тянет

Так как наполняемость камер сгорания ухудшается, снижается эффективность горения топливной смеси. Мощность и приемистость двигателя падает. Водитель не чувствует былого резвого подхвата при нажатии на педаль газа, двигатель не тянет.

Что делать, если возникло подозрение, что зазоры клапанов увеличены?

На двигателе 21083 можно самостоятельно проверить и отрегулировать тепловые зазоры в клапанном механизме. Для этого нужна пара плоских щупов, набор регулировочных шайб и два-три ключа. См. «Проверка тепловых зазоров клапанов на двигателях ВАЗ 2108, 2109, 21099».

Примечания и дополнения

— Чем опасны увеличенные тепловые зазоры клапанов? На самом деле большие зазоры менее опасны, чем слишком маленькие так как не происходит разрушения тарелок клапанов и их седел. Но негативный эффект все же есть так как постоянная работа двигателя на бедной топливной смеси приводит к ускоренному износу его деталей.

Назначение

Основным назначением теплового реле является защита электродвигателя от перекоса фаз, перегрева на затяжных пусках, заклинивании вала или подачи чрезмерной нагрузки. Для решения всех этих задач на практике выпускаются различные типы реле, имеющие узкую специализацию по конкретному направлению, рассмотрим далее более детально каждый из них.

  • РТЛ используется для защиты трехфазных асинхронных электрических машин от воздействия токов перегрузки, перегрева при обрыве или перекосе фаз, проблем с вращением вала. Может применяться как самостоятельно, так и с установкой на пускатель ПМЛ.
  • РТТ предназначено для работы с трехфазными агрегатами с короткозамкнутым ротором, обеспечивает полный охват аварийных режимов, приводящих к перегреванию обмоток. Также может устанавливаться на магнитный пускатель ПМА, ПМЕ или самостоятельно на монтажную панель.
  • РТИ – трехфазное тепловое реле с возможностью монтажа на пускатели серии КМТ, КМИ. Отличаются стабильным низким расходом электроэнергии, включаются в работу совместно с предохранителями.
  • ТРН – применяется для контроля пуска и режима работы электродвигателя, мало зависит от внешних температурных факторов. Является двухполюсной моделью, которую можно использовать для пуска двигателей постоянного тока.
  • Твердотельные — в отличии от предыдущих, не имеет контактных групп и перемещающихся элементов внутри. Применяется в трехфазных цепях, где устанавливаются повышенные требования к пожарной безопасности.
  • РТК – контролирует температурные показатели не через рабочие токи, а путем размещения датчика в корпусе мотора. Поэтому весь процесс взаимодействия осуществляется только по величине температуры.
  • РТЭ – представляет собой подобие предохранителя, так как отключение происходит за счет плавления проводника. Само тепловое устройство монтируется непосредственно с электродвигателем.

Электродвигатели с защитой TP 211

Защита TP 211 двигателя обеспечивается, только если терморезистор PTC полностью встроен в обмотки. Защита TP 111 реализуется только при самостоятельном подключении.

Терморезисторы разработаны в соответствии со стандартом DIN 44082 и выдерживают нагрузку Umax 2,5 В DC. Все отключающие элементы предназначены для приёма сигналов от терморезисторов DIN 44082, т.е терморезисторов компании Siemens.

Обратите внимание: Очень важно, чтобы встроенное устройство PTC было последовательно соединено с реле перегрузки. Многократные повторные включения реле перегрузки могут привести к сгоранию обмотки в случае блокировки электродвигателя или пуска при высокой инерции. Поэтому очень важно, чтобы температурные показатели и данные по потребляемому току устройства PTC и реле.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector