Toyota-navi.ru

АвтоКлуб Toyota
3 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Фотонный двигатель для космических кораблей принцип работы

7 космических двигателей будущего

Современные ракетные двигатели неплохо справляются с задачей выведения техники на орбиту, но совершенно непригодны для длительных космических путешествий. Поэтому уже не первый десяток лет ученые работают над созданием альтернативных космических двигателей, которые могли бы разгонять корабли до рекордных скоростей. Давайте рассмотрим семь основных идей из этой области.

Содержание

Чаще всего обсуждаются и упоминаются в научно-фантастической литературе идеи создания такого двигателя с использованием антивещества. Энтузиасты считают, что взаимодействие вещества и антивещества позволяет перевести практически всю вступающую в реакции массу в излучение.

Тем не менее, надо отметить, что распространенная в литературе формулировка «при аннигиляции выделяются гамма-кванты» в принципе физически неверна. Гамма-кванты прямо выделяются только при электрон-позитронной аннигиляции. В случае аннигиляции покоящейся (не релятивистской) пары протон-антипротон происходит сложно-цепочечная реакция: образование (часто) адронного мезоатома с временем жизни порядка 10 −27 секунды, затем распад этого атома (собственно аннигиляция) с образованием пионного комплекса, состоящего из 2-12 (в среднем 5-7) нейтральных (1/3) и заряженных (2/3) пи-мезонов (пионов), затем за время порядка 10 −17 секунды нейтральные пионы распадаются с выделением гамма-квантов с пиком энергии в спектре около 70 МэВ, в то время, как заряженные пионы, имеющие значительно много большее время жизни, до

1,5×10 −4 секунды, удаляются с околосветовыми скоростями из области реакции (в вакууме и разреженной среде — до 20-40 м, в плотном веществе, например, графите — порядка 0,1-0,2 м) и затем распадаются с образованием мюонов, в свою очередь распадающихся (в основном, 99,998 %, канале распада) на нейтрино и электроны.

Таким образом, при аннигиляции антивещества — то есть вещества, состоящего из антипротонов и позитронов, примерно 1/3 энергии выделится в виде жесткого гамма-излучения с энергией квантов 511 кэВ (от позитронно-электронной аннигиляции) и 70 МэВ от распада нейтральных пионов,

1/3 энергии — в виде заряженных частиц с достаточно большим пробегом, а

1/3 — в виде нейтрино, то есть безвозвратно будет потеряна. И «реальный» ракетный двигатель на антиматерии скорее должен выглядеть, как магнитная ловушка для заряженных частиц, а не как некое «зеркало» [источник не указан 827 дней] .

При такой невысокой массовой отдаче, порядка 23% [1] , эксплуатация фотонного двигателя становится менее выгодной. Значительно повысить его эффективность позволяет использование внешних ресурсов. Прямоточный аннигиляционный фотонный двигатель и магнитные ловушки, собирающие рассеянный в межзвездной среде водород и гелий, дают возможность существенно уменьшить запасы рабочего вещества. К сожалению количество антивещества в межзвездной среде очень мало — порядка одного атома антиводорода или антигелия на 5*10 6 атомов обычного водорода, что делает невозможным использовать этот внешний ресурс. Поэтому проблема получения большой массы антивещества и его хранения на борту остается актуальной и для прямоточного аннигиляционного фотонного двигателя. [2]

Читать еще:  Автомобильное переносное пусковое устройство для запуска двигателя

Технические проблемы

В сегодняшнем состоянии идея фотонного реактивного двигателя невероятно далека от технического воплощения. Она содержит ряд проблем, которые сейчас даже теоретически не могут быть решены: Это:

  1. Проблема получения большого количества антивещества
  2. Проблема его хранения
  3. Проблема полного использования при «сжигании» — чтобы аннигиляция происходила полностью, и в основном с выделением именно фотонов
  4. Проблема создания «зеркала», способного очень хорошо отражать гамма-излучение и другие продукты аннигиляции.

Фотонный двигатель на магнитных монополях [ править | править код ]

Если справедливы некоторые варианты теорий Великого объединения, такие как модель ‘т Хоофта — Полякова, то можно построить фотонный двигатель, не использующий антивещество, так как магнитный монополь гипотетически может катализировать распад протона [4] [5] на позитрон и π 0 -мезон:

p → e + + π 0 +pi ^<0>>

π 0 быстро распадается на 2 фотона, а позитрон аннигилирует с электроном, в итоге атом водорода превращается в 4 фотона, и нерешённой остаётся только проблема зеркала.

В то же время в большинстве современных теорий Великого объединения магнитные монополи отсутствуют, что ставит под сомнение эту привлекательную идею.

Упоминания в научной фантастике [ | ]

  • В романе Олафа Стэплдона «Последние и первые люди» (1930) даётся первое в мировой литературе подробное и научно правдоподобное описание космического корабля на аннигиляционном двигателе.
  • В советских фильмах «Москва — Кассиопея» и «Отроки во Вселенной» главные герои отправляются в звёздную систему Альфы Кассиопеи на звездолёте «ЗАРЯ» (Звездолёт Аннигиляционный Релятивистский Ядерный), очевидно использующем в качестве источника энергии распад протонов, так как иначе звездолёт не может быть одновременно аннигиляционным и ядерным.
  • В сериале «Star Trek» («Звёздный путь») бортовая энергосистема звездолётов Федерации и многих других звёздных и галактических держав использует антивещество в качестве энергоносителя, но главные маршевые двигательные установки звездолётов не фотонные.
  • В романе Ивана Ефремова «Туманность Андромеды» звездолёты землян используют фантастическое вещество анамезон «с разрушенными мезонными связями ядер атомов, обладающее близкой к световой скоростью истечения» [6] . В романе «Час Быка» земляне используют более совершенные звездолёты прямого луча, принцип действия которых был основан на работах Рен Боза и исследованиях найденного землянами корабля жителей туманности Андромеды.
  • В произведениях Станислава Лема «Непобедимый» и «Фиаско» космический корабль летает на фотонной тяге.
  • В рассказе В. Михайлова «Ручей на Япете» (1971) — космический корабль «Синяя птица» использует фотонную тягу.
  • В произведениях братьев Стругацких (смотри Хиус, Страна багровых туч).
  • В произведении Бернара Вербера «Звёздная бабочка».
  • В компьютерной игре «Sins of a Solar Empire» вся техника всех рас использует антивещество.
  • В компьютерной игре «Петька 007: Золото Партии» Петька и Василий Иванович включают фотонные двигатели на корабле, чтобы полететь в космос.
  • В книге «Сомнамбула» (все части) Александра Зорича крейсер «Справедливый» летает в досветовом режиме на фотонной тяге, в книгах «Три капитана» и «Звездопроходцы» два фотонных звездолёта — «Восход» и «Звезда» отправляются с Земли к планете Сильвана.
  • В книге «Автостопом по галактике» Дугласа Ноэля Адамса космический корабль «Золотое сердце», летает на «невероятностной тяге», в том числе и на «обычной фотонной тяге».
  • В песне «Тау Кита» Владимира Высоцкого астронавт путешествует на космическом корабле, имеющем в своей конструкции отражатель и двигающемся «по световому лучу».
  • В серии произведений Андрея Ливадного «Экспансия: История Галактики» неоднократно упоминаются корабли на фотонной тяге, имеющие в конструкции характерную «чашу фотонного отражателя», и считаются устаревшими.
Читать еще:  Что можно сделать из двигателя для стиральной машинки

Двигатель размером с атом

В ближайшее время ученые смогут в лабораториях экспериментировать с двигателями, использующими квантовые эффекты. Немецкие исследователи уже сделали шаг к этой цели, построив тепловой двигатель, состоящий из одного атома. Йоханнес Роснагель, квантовый физик из Университета Майнца, и его коллеги построили конусообразную оболочку вокруг иона кальция. После использования лазера и электрического поля для нагрева иона примерно на один градус выше абсолютного нуля, исследователи измерили работу, выполняемую ионом, когда он оказывал небольшое усилие к вершине конуса.

Типичный двигатель (слева) использует тепловую энергию для привода турбины или выполнения какой-либо другой задачи. Уменьшите размер двигателя до минимального, и он может заставить один атом (справа, зеленая точка) вибрировать и выполнять небольшую работу.

Исследователи сообщили в статье, опубликованной на сайте arXiv.org, наноскопический двигатель работал в соответствии с законами термодинамики. Роснагель говорит, что с учетом крошечного веса иона мощность была сопоставима с мощностью автомобильного двигателя. «Довольно интересно видеть, что вы можете управлять тепловыми машинами с одним атомом», — говорит он.

Несмотря на измеримую выходную мощность одноионного двигателя, Роснагель предупреждает, что наноразмерные двигатели для практического использования находятся в лучшем случае на расстоянии десятилетий. Вместо этого полезность квантовой термодинамики, вероятно, будет происходить при развитии других технологий.

Создание варп двигателя

Теоретическая возможность – это, конечно, здорово, но теперь Уайту нужно практическое ее доказательство.

Мы используем модифицированный интерферометр Майкельсона-Морли, что позволяет нам измерить микроскопические искривления в пространстве и времени. Говоря проще – это попытка сделать одну из ножек интерферометра казаться короче другой при запуске устройства.

Уайт и его коллеги пытаются смоделировать оптимальный привод Алькубьерре в миниатюре, используя лазеры для искривления пространства-времени на фактор один к 10 миллионам.

Читать еще:  Через сколько замена масла двигателя на ниссан тиида

Конечно, интерферометр – это не то, что НАСА бы присоединило к космическому кораблю. Скорее, это часть большого научного преследования.

Наше первоначальное испытательное устройство имитирует кольца огромного энергетического потенциала за счет использования колец керамических конденсаторов, которые заряжаются до десятков тысяч вольт. Мы увеличим точность наших приборов и продолжим повышать чувствительность интерферометра деформации поля – в конечном итоге станет возможно использовать устройства для прямой генерации отрицательной энергии вакуума.

С помощью этих экспериментов, как надеется Уайт, НАСА сможет перейти от теории к практике.

Сравнительная характеристика

Все вышесказанное, конечно же, передает все технические аспекты и преимущества двигателя, но, как говорится, все познается в сравнении. Что будет, если провести параллели между современными ракетными двигателями и квантовым двигателем Владимира Семеновича Леонова?

Итак, современные космические двигатели на один киловатт мощности способны добиться тяги, равной одному ньютону, это равносильно одной десятой килограмм-силы. Квантовый же двигатель превосходит ракетный в несколько раз. На тот же один киловатт тяга составляет у него пять тысяч ньютонов, что равносильно пятистам килограмм-силы. Как видно разработка Леонова способна многократно увеличить КПД, что, в свою очередь, подарит человечеству новую технологическую эру.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector