Toyota-navi.ru

АвтоКлуб Toyota
5 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Холостой ход двигателя постоянного тока последовательного возбуждения

Регулирование скорости двигателя постоянного тока последовательного возбуждения изменением напряжения

Регулирование скорости двигателя постоянного тока последова­тельного возбуждения изменением напряжения обмотки якоря произво­дится при питании двигателя от отдельного преобразователя П рис. 3.19.

Напряжение на выходе преобразователя регулируется напряжением управления иу.

Так как двигатель последовательного возбуждения включен непо­средственно на выход преобразователя, то напряжение на двигателе равно напряжению преобразователя.

Таким образом, искусственные электромеханические характери­стики нелинейны при малых нагрузках (0 /н) искус­ственные характеристики аналогичны искусственным характеристикам двигателя независимого возбуждения при изменении напряжения об­мотки якоря. То есть при уменьшении напряжения скорость двигателя снижается, а линейная их часть смещается параллельно линейной части естественной характеристики.

При скорости со = 0 по обмотке якоря двигателя протекает ток ко­роткого замыкания Ток короткого замыкания двигателя

пропорционален напряжению обмотки якоря и уменьшается с уменьше­нием этого напряжения.

Семейство электромеханических характеристик двигателя после­довательного возбуждения при регулировании скорости изменением напряжения приведено на рис. 3.20.

Рис. 3.20. Электромеханические ха­рактеристики двигателя постоянно­го тока последовательного возбуж­дения при регулировании скорости напряжением

Показатели регулирования двигателя последовательного возбужде­ния близки к показателям двигателя независимого возбуждения, однако диапазон регулирования скорости существенно меньше и редко превы­шает D

  • Изменение направления вращения двигателя постоянного тока последовательного возбуждения
  • Регулирование скорости двигателя постоянного тока последовательного возбуждения с помощью резисторов в цепи обмотки якоря
  • Рекомендации по выбору бизнеса
  • Строительное оборудование МСД
  • Тепловые насосы

Торможение в режиме независимого возбуждения

При торможении в режиме независимого возбуждения, обмотка возбуждения отключается от обмотки якоря и подключается к постороннему источнику постоянного тока, а якорь электродвигателя отключается от сети и замыкается на тормозное сопротивление.

Схема двигателя постоянного тока последовательного возбуждения при динамическом торможении в режиме независимого возбуждения.

Характеристики в тормозных режимах описываются уравнениями:

ω = (Iа·Rа) / (CM·Фδ)

ω = -[(M·Rа) / (CM·Фδ)2]

Это прямые линии, проходящие через начало координат. Наклон этих линий зависит от величины добавочных сопротивлений, включаемых в цепь якоря.

Характеристики двигателя постоянного тока последовательного возбуждения при динамическом торможении в режиме независимого возбуждения. Rдоб.3>Rдоб.2>Rдоб.1

Схемы включения двигателя постоянного тока

Наличие обмоток возбуждения – отличительная особенность машин постоянного тока. От способов их подключения к сети зависят электрические и механические свойства электродвигателя.

Независимое возбуждение

Обмотка возбуждения подключается к независимому источнику. Характеристики двигателя получаются такие же, как у двигателя с постоянными магнитами. Скорость вращения регулируется сопротивлением в цепи якоря. Регулируют ее и реостатом (регулировочным сопротивлением) в цепи обмотки возбуждения, но при чрезмерном уменьшении его величины или при обрыве ток якоря возрастает до опасных значений. Двигатели с независимым возбуждением нельзя запускать на холостом ходу или с малой нагрузкой на валу. Скорость вращения резко увеличится, и двигатель будет поврежден.

Схема независимого возбуждения

Остальные схемы называют схемами с самовозбуждением.

Параллельное возбуждение

Обмотки ротора и возбуждения подключаются параллельно к одному источнику питания. При таком включении ток через обмотку возбуждения в несколько раз меньше, чем через ротор. Характеристики электродвигателей получаются жесткими, позволяющие использовать их для привода станков, вентиляторов.

Читать еще:  В чем причина плохого запуска инжекторного двигателя

Регулировка скорости вращения обеспечивается включением реостатов в цепь ротора или последовательно с обмоткой возбуждения.

Последовательное возбуждение

Обмотка возбуждения включается последовательно с якорной, по ним течет один и тот же ток. Скорость такого двигателя зависит от его нагрузки, его нельзя включать на холостом ходу. Но он обладает хорошими пусковыми характеристиками, поэтому схема с последовательным возбуждением применяется на электрифицированном транспорте.

Схема последовательного возбуждения

Смешанное возбуждение

При этой схеме используются две обмотки возбуждения, расположенные попарно на каждом из полюсов электродвигателя. Их можно подключить так, чтобы потоки их либо складывались, либо вычитались. В результате двигатель может иметь характеристики как у схемы последовательного или параллельного возбуждения.

Схема смешанного возбуждения

Для изменения направления вращения изменяют полярность одной из обмоток возбуждения. Для управления пуском электродвигателя и скоростью его вращения применяют ступенчатое переключение сопротивлений.

Модели независимого возбуждения

Моторы ПТ НВ обладают обмоточным возбуждением, подключаемым к отдельному виду источника для электрического питания. В таком случае обмоточная цепь возбуждения ДПТ НВ дополняется реостатом регулировочного типа, а якорная цепь снабжается добавочными или пусковыми реостатными элементами.

Отличительной особенностью такого вида мотора является независимость токового возбуждения от якорного тока, что обуславливается независимым питанием обмоточного возбуждения.

Характеристики электродвигателей с независимым и параллельным возбуждением

Линейная механическая характеристика при независимом типе возбуждения:

  • ω — показатели вращательной частоты;
  • U — показатели напряжения на эксплуатируемой якорной цепи;
  • Ф — параметры магнитного потока;
  • Rя и Rд — уровень якорного и добавочного сопротивления;
  • Α — константа конструкции движка.

Данным типом уравнения определяется зависимость вращательной скорости мотора к моменту вала.

Особенности и устройство ДПТ

ДПТ представляет собой вращающуюся электрическую машину, работающую от постоянного тока. В зависимости от направления потока мощности проводится различие между двигателем (электродвигатель с электрической и механической мощностью) и генератором (электрический генератор, на который подаётся механическая мощность, а также электроэнергия). ДПТ могут запускаться под нагрузкой, их скорость легко изменить. В режиме генератора ДПТ преобразует напряжение переменного тока, подаваемое ротором, в пульсирующее постоянное напряжение.

История изобретения

Основываясь на развитии первых гальванических элементов в первой половине XIX века, первыми электромеханическими преобразователями энергии были машины постоянного тока. Первоначальная форма электродвигателя была разработана в 1829 году, а в 1832 году француз Ипполит Пиксии построил первый генератор. Антонио Пачинотти построил в 1860 году электродвигатель постоянного тока с многокомпонентным коммутатором. Фридрих фон Хефнер-Алтенек разработал барабанный якорь в 1872 году, который открыл возможность промышленного использования в области крупномасштабного машиностроения.

В последующие десятилетия такие машины из-за развития трехфазного переменного тока потеряли свою значимость в крупномасштабном машиностроении. Синхронные машины и системы с низким уровнем обслуживания асинхронного двигателя заменили их во многих устройствах.

Конструкция двигателя

Чтобы понять принцип действия ДПТ, нужно сначала изучить его конструктивные особенности, одной из которых является то, что в магнитном поле постоянного магнита установлен вращающийся проводящий контур.

Упрощая эту структуру, можно сказать, что двигатель состоит из двух основных компонентов:

  1. Основной магнит (постоянный магнит), который прикреплён к статору. Магнитное поле также может быть электрически сгенерировано. На статоре находятся так называемые возбуждающие обмотки (катушки).
  2. Проводящая петля (арматура) на сердечнике якоря, обычно состоящая из слоистых металлических листов.
Читать еще:  Включение дхо при запуске двигателя на ваз 2110

Обе конструкции называются двигателями постоянного тока с внешним возбуждением. Электродинамический закон указывает, что токопроводящая петля проводника в магнитном поле представляет собой силу [F], зависящую от тока [I] и напряжённости магнитного поля [B]. Токопроводящий проводник окружен круговым магнитным полем. Если объединить магнитное поле магнитного поля с магнитным полем проводящей петли, можно обнаружить суперпозицию двух полей, а также результирующий силовой эффект.

Обмотка якоря состоит из двух половин катушки. Если применить напряжение постоянного тока к двум концам обмотки якоря, можно представить, что движущиеся носители заряда поступают в нижнюю половину катушки из верхней половины катушки.

Каждая токопроводящая катушка развивает собственное магнитное поле, и магнитное поле постоянного магнита накладывается на магнитное поле нижней половины катушки и поле верхней половины катушки. Линии поля постоянного магнитного поля всегда одного направления, они всегда показывают с севера на южный полюс. Напротив, поля двух половин катушки имеют противоположные направления.

В левой части поля половины катушки полевые линии поля возбудителя и поля катушки имеют одно и то же направление. Благодаря этому силовому эффекту в противоположном направлении на нижнем и верхнем концах арматуры создаётся крутящий момент, который вызывает вращательное движение якоря.

Якорь представляет собой так называемый двутавровый якорь. Эта конструкция получила название из-за своей формы, которая напоминает два составных «Т». Катушки якоря соединены с платами коммутатора (коллектора). Подача тока в обмотке якоря обычно осуществляется через угольные щётки, которые обеспечивают скользящий контакт с вращающимся коммутатором и подают катушкам электричество. Щётки изготавливаются из самосмазывающихся графитов, частично смешанных с медным порошком для небольших двигателей.

Испытание машин постоянного тока

Согласно требованиям СНиП, ПУЭ все электрические машины перед вводом в эксплуатацию должны пройти проверку на соответствие техническим условиям. Объем работ отличается в зависимости от характеристик оборудования: мощности, напряжения, состояния и назначения. Крупные машины испытываются в два этапа.

Во время испытания измеряется сопротивление изоляции обмоток, сопротивление обмоток постоянному току, обмотки испытываются повышенным напряжением промышленной частоты, проверяются системы охлаждения и смазки.

Обмотки проверяются на отсутствие обрыва, щетки на нейтрали и правильность чередования полюсов, измеряются воздушные зазоры.

Определение возможности включения без сушки машин постоянного тока

Возможность включения машины без сушки производится в соответствии с указаниями завода-изготовителя.

Измерение сопротивления изоляции

При измерении сопротивления мегаомметром значения должны соответствовать нормам и должны быть не менее 1 МОмкВ, но не менее 0,5 МОмкВ. Проверяется сопротивление изоляции каждой обмотки по отношению к заземленному корпусу и между отдельными обмотками.

Сопротивление изоляции бандажей

Измерение производится относительно корпуса и удерживаемых ими обмоток. Измеренное значение сопротивления изоляции должно быть не менее 0,5 Мом.

Испытание изоляции повышенным напряжением промышленной частоты

В соответствии с ПУЭ измерение сопротивления обмоток статора и ротора постоянному току у электродвигателей переменного тока производят в машинах на напряжение 2 кВ и выше и в машинах 300 кВт и более на все напряжения. В электродвигателях переменного тока мощностью 300 кВт и более проверяют сопротивление обмоток статора и ротора. У машин постоянного тока мощностью 200 кВт и возбудителях синхронных генераторов и компенсаторов проверяют сопротивление обмотки возбуждения и обмотки якоря. Измерения выполняют одинарным или двойным мостом постоянного тока или методом амперметра — вольтметра.

Читать еще:  Влияет ли датчик температур двигателя на обороты двигателя

Измерение сопротивления постоянному току:

  • обмоток возбуждения. Значения сопротивления постоянному току по отдельным фазам не должны отличаться друг от друга и заводских данных более чем на ±2 %, а по отдельным параллельным ветвям — более чем на 5 %. Испытание обмоток повышенным напряжением промышленной частоты производят для проверки электрической прочности изоляции и приведены в ПУЭ.
  • обмотки якоря. Сопротивления должны отличаться не более чем на 10% за исключением случаев, когда колебания обусловлены схемой соединения обмоток;
  • реостатов и пускорегулировочных резисторов. Измеряется общее сопротивление, проверяется целость отпаек. Допускается отличие от данных завода-изготовителя не более чем на 10%.

Проверке подвергаются машины собранные и просушенные на месте установки, находящиеся в неподвижном положении в отключенном состоянии. Перед испытанием проверяют сопротивление изоляции, уточняя коэффициент абсорбции. Затем машину очищают и продувают сухим и чистым сжатым воздухом.

Когда испытания повышенным напряжением закончены обмотку следует разрядить, соединив ее с корпусом машины, и проверить сопротивление мегаомметром.

Машина проходит испытание, если за 1 минуту не произойдет пробоя или частичного нарушения изоляции. Результаты испытаний и измерений машин перед пуском оформляют, согласно СНиП, соответствующими протоколами и актами.

Снятие характеристики холостого хода и испытание витковой изоляции

Подъем напряжения производится:

  • для генераторов постоянного тока до 130% номинального напряжения;
  • для возбудителей — до наибольшего (потолочного) или установленного заводом-изготовителем напряжения.

Напряжение между соседними коллекторными пластинами должно быть не выше 24 В. Продолжительность испытания — 3 мин. Допускается отклонение в пределах погрешности.

Снятие нагрузочной характеристики

Производится для возбудителей при нагрузке до значения не ниже номинального тока возбуждения генератора. Отклонение от заводской характеристики не нормируется.

Измерение воздушных зазоров между полюсами

Машины мощностью 200 кВт и более могут иметь зазор не более 10% среднего размера зазора, при измерении диаметрально противоположных точках. Не более 5% для возбудителей турбогенераторов.

Испытание на холостом ходу и под нагрузкой

Определяется предел регулирования частоты вращения или напряжения, который должен соответствовать заводским и проектным данным.

Где используются

Еще совсем недавно генераторы постоянного тока устанавливались на транспорте для железных дорог. Но сейчас их вытесняют синхронные трехфазные устройства. Переменный ток синхронных агрегатов выпрямляют полупроводниковыми установками. Некоторые новые локомотивы используют асинхронные двигатели, которые работают на переменном токе.

Применение ГПТ

Такие же обстоятельства и с автогенераторами, которые постепенно замещают асинхронными устройствами с дальнейшим выпрямлением.

Сварочный генератор

Стоит заметить, что передвижное оборудование для сварки (имеющие автономное питание) обычно находится в паре с таким генератором. Отдельные отрасли промышленности продолжают применять мощные агрегаты описанного типа.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector