Toyota-navi.ru

АвтоКлуб Toyota
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Устройство и принцип работы асинхронного двигателя реферат

Асинхронный двигатель. Устройство и принцип работы.

Здравствуйте, дорогие читатели! Сегодня вы узнаете, что такое асинхронный двигатель, рассмотрим его основные характеристики, а так же поговорим о плюсах и минусах.

Принцип работы любого асинхронного двигателя основан на физическом взаимодействии магнитного поля, возникающего в статоре, с током, который это же поле наводит в обмотке ротора. Электрическое напряжение прикладывается к обмотке статора, которая выполнена как три группы катушек. Под действием напряжения в обмотке возникает переменный трехфазный ток, который и наводит вращающееся магнитное поле. При пересечении замкнутой обмотки ротора, это поле, в соответствии с законом об электромагнитной индукции, создает в ней ток.

Взаимодействие вращающегося магнитного поля (статор) и тока (ротор) создает вращающий электромагнитный момент, который и приводит ротор в движение. Благодаря совокупности моментов, создаваемых отдельными проводниками, возникает результирующий момент, электромагнитная пара сил, заставляющая вращаться ротор в направлении, в котором движется электромагнитное поле в статоре. Ротор и магнитное поле при этом вращаются с различными скоростями, т.е. асинхронно (отсюда и основное название двигателей). У асинхронных двигателей скорость, с которой будет вращаться ротор, всегда будет меньше скорости, с которой вращается магнитное поле в статоре.

Рис. 1. Асинхронный двигатель

Асинхронный двигатель с фазным ротором необходим в приводах, которые сразу требуют большого пускового момента – лифты, краны, мельницы и т.д. В таких механизмах необходимее уже при запуске двигателя получить максимальный момент, но при этом ограничив значение пускового тока.

Основные элементы асинхронного двигателя – ротор и статор, разделяемые воздушным зазором. Активные части двигателя – магнитопровод и обмотки, остальные составляющие – конструктивные, призванные обеспечить необходимую жесткость, прочность, возможность вращения и его стабильность, охлаждение и т.д.

Cтатор – неподвижная часть, на внутренней стороне сердечника которого размещаются обмотки. Обмотка статора — это трехфазная (для общего случая — многофазная) обмотка, в которой проводники равномерно распределяются по окружности статора и уложены пофазно в пазах, соблюдая угловое расстояние равное 120 эл.град. Статорные фазы обмотки соединены стандартно – «звезда» или «треугольник» — и подключены к трехфазной сети электротока. В процессе вращения (изменения) магнитного потока в обмотках возбуждения, происходит перемагничивание магнитопровода статора, поэтому он изготовлен шихтованным (набирается из пластин) из особой электротехнической стали – таким способом удается минимизировать магнитные потери.

Достоинства и недостатки

В первую очередь асинхронные электродвигатели достаточно просты в части устройства и изготовления, что не может не влиять на их стоимость, ведь в частности из-за невысокой цены этот мотор завоевал большую популярность среди покупателей. Так же важную роль играет и надежность АД, и их экономичность в области эксплуатационных затрат — они практически не требуют обслуживания. Конечно, это не говорит о том, что асинхронный электродвигатель можно установить и совсем забыть о периодических ревизиях, но все же их требуется достаточно мало, схема его достаточно неприхотлива.

Ну и конечно не стоит забывать о том, что для включения в сеть, т.е. для запуска и эксплуатации, не требуется каких-либо дополнительных устройств, таких как разнообразные преобразователи и т.п.

Но, при такой простоте и невысокой стоимости, естественно, не обошлось и без недостатков, которые нельзя назвать мелкими. Из них можно выделить следующие:

  • сравнительно небольшой пусковой момент;
  • значительные пусковые токи, а значит и энергозатраты при включении;
  • довольно низкий коэффициент полезного действия;
  • необходимую точность скорости довольно тяжело отрегулировать;
  • у асинхронного двигателя, имеющего короткозамкнутый привод (при включении в трехфазную сеть 50 Гц), скорость вращения не превышает 3000 об/мин;
  • большая зависимость крутящего момента от напряжения сети. К примеру, при понижении входного тока в 2 раза, скорость крутящего момента может упасть в 4 раза.
Читать еще:  Что меняют в замене масла в двигатель акцент

Но все вышеперечисленное относится только к моторам, имеющим строение на основе короткозамкнутого ротора, производство двигателей которыми не ограничивается. Попробуем рассмотреть более подробно асинхронные электродвигатели с короткозамкнутым ротором, а также другие типы подобных агрегатов, которые представлены на прилавках магазинов электротехники.

Ротор асинхронного двигателя, обмотка которого короткозамкнута, так же называют и «беличьим колесом» по причине того, что она похожа на цилиндрическую сетку, прутья которой замыкаются посредством двух колец с одного и другого торца.

Структура, как ротора, так и асинхронного статора является зубчатой. В АД небольших мощностей обмотка изготавливается простейшим способом — алюминиевый сплав в расплавленном состоянии заливается в углубления на роторе. Тем же способом, одновременно, заливаются и оба кольца, замыкающие «колесо», а также торцевой синхронизатор, осуществляющий вентиляционное охлаждение агрегата, т.е. с его помощью обеспечивается нормальная рабочая температура. При необходимости изготовления более мощных двигателей вместо алюминиевого сплава используют медь.

Асинхронные двигатели переменного тока с т.н. «двойной беличьей клеткой» для модернизации пусковой характеристики в настоящее время практически ушли в прошлое. Сейчас применяется схема, при которой пазы для проводников делаются глубже, причем внутренняя часть каждого из них имеет большее сечение, нежели внешняя. В результате подобной технологии изготовления ротора увеличивается пусковой момент и уменьшается ток, за счет более сильного активного сопротивления обмотки.

Области применения АДКЗ довольно обширны. К тому же, в последние годы все больше начали применяться частотные преобразователи, при помощи которых стало возможно плавное наращивание скорости, вследствие чего достигается больший пусковой момент и снижение тока, тем самым увеличивается коэффициент полезного действия асинхронного двигателя с короткозамкнутым ротором.

Так же очень интересна схема исполнения АДКЗ, в которой используется возможность изменения числа пар обмоток статора. Принцип работы асинхронного двигателя подразумевает, что подобным действием возможно изменение скорости его вращения.

На сегодняшний день подобные конструкции двигателей, несмотря на их недостатки, являются наиболее распространенными и востребованными. А вот остальные виды асинхронных двигателей уже более узконаправленны, и их применение не так значительно.

Принцип работы и устройство асинхронного двигателя

Асинхронный (индукционный) двигатель – механизм, превращающий силу переменного тока в механическую. Под асинхронным подразумевают, что скорость движения магнитной силы статора выше аналогичной величины оборотов ротора.

Для того, чтобы получше представлять, что такое асинхронный двигатель и принцип действия трехфазного асинхронного двигателя, где он используется и как работает, необходимо разобраться в его составных частях и деталях, исследовать технические характеристики. Кроме того, не лишним будет понять, как происходит преобразование силы во время пуска и где используется асинхронный двигатель на практике.

В сегодняшней статье мы попробуем ответить на самые интересные вопросы, связанные с асинхронными двигателями, разобраться в том, что такое устройство однофазного асинхронного двигателя, рассмотрим принципы работы, а также плюсы и минусы данного типа устройств.

Немного истории

Первый подобный механизм электродвигателей появился еще в 1888 году и представил его американский инженер Никола Тесла. Однако, его опытный образец устройства и был не самым удачным, так как был двух фазным или много фазным и рабочие характеристики асинхронного двигателя не удовлетворяли потребителей. Поэтому широкого распространения не получил.

А вот благодаря российскому ученому Михаилу Доливо-Доброволь скому в изобретение удалось вдохнуть новую жизнь. Именно ему принадлежит первенство в деле создания первого в мире трехфазного асинхронного мотора.

Такое усовершенствование конструкции стало революционным, так как принцип работы трехфазного асинхронного двигателя позволял использовать для работы всего три провода, а не четыре.

Читать еще:  В чем отличие свечи для 16 клапанного двигателя

Так что для плавного пуска устройства в массовое производство препятствий больше не оставалось.

Сегодня, благодаря своей простоте эти машины получили широкое распространение, а механическая характеристика асинхронного двигателя устраивает всех водителей.

Каждый год доля асинхронных двигателей, среди всех двигателей мира, составляет 90%.

Простота в использовании, принцип действия асинхронного двигателя, легкий пуск, надежность и дешевизна, помогли этим моторам распространиться по всему миру и буквально совершить технический переворот в промышленности.

Принцип работы трехфазного двигателя основан на питании от трех фаз переменного тока в стандартной сети. Для работы ему требуется именно такое электричество и поэтому он назван трех фазным.

Устройство трехфазного двигателя

Любой мотор асинхронного типа, независимо от его мощности и размеров, состоит из одних и тех же частей, механическая характеристика асинхронного двигателя также одна и та же. Главными среди составляющих являются:

  • статор (неподвижная часть машины)
  • ротор (вращающаяся часть)

Помимо этого, в современных трех фазных двигателях можно найти следующие детали:

  • вал
  • подшипники
  • обмотку
  • заземление
  • корпус (в который монтируются все детали)

Как уже указывалось выше, базовые элементы двигателя — это статор (неподвижная часть) и ротор (подвижная деталь).

Статор выполнен в виде цилиндра, составлен данный элемент из множества металлических, форменных листов. Внутренняя часть создана таким образом, чтобы расположить обмотку. Центры обмоток расположены под углом в 120 градусов, а подключение происходит, исходя из доступного напряжения и двух возможных вариантов: на три или пять контактов.

Устройство асинхронного двигателя и правила обслуживания

Схема пуска асинхронного двигателя может быть улучшена за счет последовательного включения с обмоткой пускового конденсатора. После отключения конденсатора происходит полное сохранение всех характеристик двигателя. Очень часто схема включения асинхронного двигателя имеет рабочую обмотку, разбиваемую на две последовательно соединяемые фазы. При этом пространственный сдвиг осей находится в пределах от 105 до 120 градусов. Для тепловых вентиляторов применяются двигатели с наличием экранированных полюсов.

Устройство трехфазного асинхронного двигателя требует проведения ежедневного осмотра, внешней очистки и крепежных работ. Два раза в месяц и более двигатель должен продуваться изнутри с помощью сжатого воздуха. Особое внимание следует обращать на смазку подшипников, которая должна соответствовать конкретному типу двигателя. Полная замена смазки производится дважды в течение года, с одновременной промывкой подшипников бензином.

Как работают электрические двигатели

Асинхронные двигатели

Кратенько описали внешние отличия электрических двигателей, теперь пара слов по поводу устройства и функционирования. Асинхронные двигатели при помощи статора создают по оси вращающееся магнитное поле. Барабан беличьей клетки редко изготавливается из ферромагнитных материалов (если вообще имеет место быть). В противном случае нагрев вышел бы значительным. Фактически получается индукционная печь.

Силуминовый барабан вдоль линий магнитного поля содержит медные проводники. Разница в проводимости такова, что не проводится изоляции: ток несут красно-коричневые жилы. Поле, индуцированное статором ЭДС, слабое. Применяются специальные меры, помогающие разогнать вал. Магнитное поле ротора плохо цепляется, асинхронный двигатель стоит столбом. Действенная мера противодействия проблеме ограничивается созданием двойной беличьей клетки: вдоль барабана проходит на некоторой глубине второй ряд медных жил. Объединены торцами единой сетью.

На запуске частота тока, глубина проникновения поля велики. Включаются в работу оба слоя беличьей клетки. По мере разгона разница нивелируется, падает до нуля. Амплитуда поля снижается, рабочим остается внешний слой беличьей клетки. Обратите внимание, догнать поле ротор бессилен, проскальзывает, запаздывает. Поэтому двигатели получили название асинхронных. Англичане делают проще – зовут индукционными.

Читать еще:  Что за цепь в двигателе на ауди а4

Если поле вращать со скоростью ротора, ЭДС перестает наводиться. Последует замедление, цикл повторится, начавшись разгоном. Ротор по-прежнему будет отставать от поля. Так работает устройство короткозамкнутого типа. Фазный ротор (спасибо Википедия), содержащий трехфазную обмотку, выполняет несколько функций, согласно назначению устройства:

  • Подпитывается электричеством через кольцо токосъемника. Теперь ротор получает фазу и наводит на статоре ЭДС. Постепенно вал подхватывается полем, дальнейший процесс описан выше.
  • Подпитывается постоянным током. Образуется синхронный двигатель.
  • Снабжается реостатами, дросселями, регулирующими скорость.
  • Реализует управление инвертором (усложненный первый случай).

Принцип действия асинхронных двигателей: используется наведенная ЭДС, скорость вращения неспособна догнать поле (пропадают токи). Иначе тип мотора меняется (синхронный). Для регуляции скорости часто используется амплитуда питающего напряжения. Способ годится двигателям асинхронного типа с короткозамкнутым, фазным ротором. Перечислим методики:

Работа двигателя переменного тока

  • Для машин с короткозамкнутым ротором годятся:
    1. Регулирование частоты напряжения питания.
    2. Изменение числа пар полюсов статора. В результате меняется скорость вращения поля, давая нужный эффект.
  • Для машин с фазным ротором допускается:
    1. Вводить реостат в цепь питания. Растут потери на скольжение, закономерно изменяя скорость.
    2. Применять специальные вентили. Энергия скольжения выпрямляется схемой Ларионова, подается в виде постоянного напряжения вспомогательному электрическому двигателю, нарезающему импульсы через управляемые извне тиристоры. Мощность, которая обычно терялась бы, возвращается. Через вал вспомогательного двигателя, трансформатор, обмотки которого частично включены в сеть питания. Управление скоростью выполняют внедрением дополнительной ЭДС. Делается либо напрямую (через источник питания), либо сдвигом угла включения тиристоров относительно питания. Частота отклоняется от номинала.
    3. Двигатель двойного питания является вариантом реализации регулировки скорости в оборудовании с фазным ротором. Тип чаще применяется для реализации схем генераторов. Ротор уплывает частотой вращения – двигатель все-таки асинхронный. Статор, ротор питаются отдельно. Позволяет для каждой обмотки задавать частоту, закономерно приводит к нужным изменениям скорости.

Асинхронным двигателям годится изменение амплитуды питания. Наибольшим КПД обладают вентильные схемы, самые дорогие.

Двигатель асинхронного типа

Преимущества применения частотно регулируемых приводов для управления АД

  1. Облегчает пусковой режим привода.
  2. Позволяет двигателю долго работать, независимо от степени загрузки.
  3. Обеспечивает большую точность регулировочных операций.
  4. Позволяет контролировать состояние отдельных узлов в цепях промышленной электрической сети. За счет этого возможно вести постоянный учет количества времени, наработанного двигателями, чтобы потом оценивать их результативность.
  5. Наличие электронных узлов дает возможность диагностировать неисправности в работе двигателя дистанционно.
  6. К устройству можно подключать различные датчики обратной связи (давления, температуры). В результате скорость вращения будет стабильна при постоянно меняющихся нагрузках.
  7. При пропадании сетевого напряжения включается управляемое торможение и перезапуск.
    В результате:
  • повышается уровень КПД за счет чего можно сэкономить порядка 30-35 % электроэнергии;
  • количество и качество конечного продукта возрастает;
  • снижается износ комплектующих механизмов;
  • возрастает срок службы оборудования.

Особенности работы синхронных двигателей

Все синхронные двигатели обладают такими преимуществами:

  1. Они не отдают и не потребляют реактивную энергию в сеть. Это позволяет уменьшить их габариты при сохранении мощности. Типичный синхронный электродвигатель меньше асинхронного.
  2. В сравнении с асинхронными устройствами, менее чувствительны к скачкам напряжения.
  3. Хорошая сопротивляемость перегрузкам.
  4. Такие электрические машины способны поддерживать постоянную скорость вращения, если уровень нагрузок не превышает допустимые пределы.

В любой бочке, есть ложка с дегтем. Синхронным электродвигателям присущи такие недостатки:

  • сложная конструкция;
  • затрудненный пуск в ход;
  • довольно сложно изменять скорость вращения (посредством изменения значения частоты тока).

Сочетание всех этих особенностей делает синхронные двигатели невыгодными при мощностях до 100 Вт. А вот на более высоких уровнях производительности, синхронные машины показывают себя во всей красе.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector