В каком году был изобретен реактивный двигатель
История реактивного двигателя — Кто изобрел реактивный двигатель? — 2021
- Ранние концепции реактивного движения
- Концепция турбореактивного двигателя сэра Фрэнка Уиттла
- Концепция непрерывного цикла сгорания д-ра Ханса фон Охайна
Хотя изобретение реактивного двигателя можно проследить до эолипиля, сделанного около 150 г. до н. Э., Д-р Ханс фон Охайн и сэр Фрэнк Уиттл признаны со-изобретателями реактивного двигателя, какими мы его знаем сегодня, хотя каждый работал отдельно и ничего не знал о работе другого.
Реактивное движение определяется просто как любое движение вперед, вызванное выбросом назад высокоскоростной струи газа или жидкости. В случае воздушных перевозок и двигателей реактивное движение означает, что сама машина работает на реактивном топливе.
В то время как фон Охайн считается разработчиком первого действующего турбореактивного двигателя, Уиттл первым зарегистрировал патент на свою схему прототипа в 1930 году.Фон Охайн получил патент на свой прототип в 1936 году, а его самолет впервые взлетел в 1939 году. Уиттлс впервые взлетел в 1941 году.
Хотя фон Охайн и Уиттл могут быть признанными отцами современных реактивных двигателей, многие деды пришли впереди них, руководя ими, прокладывая путь для современных реактивных двигателей.
- Сила тяги реактивного двигателя не зависит от наличия окружающей среды [1] .
- Сила тяги реактивного двигателя не зависит от скорости движения ракеты [1] .
- Полезная мощность реактивного двигателя пропорциональна скорости ракеты [1] .
- При скорости ракеты, большей, чем половина скорости истечения газов двигателя, полезная мощность реактивного двигателя становится больше полной мощности (парадокс силы тяги реактивного двигателя) [1] .
Существует два основных класса реактивных двигателей:
- Воздушно-реактивные двигатели — тепловые двигатели, которые используют энергию окисления горючегокислородомвоздуха, забираемого из атмосферы. Рабочее тело этих двигателей представляет собой смесь продуктов горения с остальными компонентами забранного воздуха.
- Ракетные двигатели — содержат все компоненты рабочего тела на борту и способны работать в любой среде, в том числе и в безвоздушном пространстве.
Пламенный мотор
Реактивные авиадвигатели во второй половине XX века открыли новые возможности в авиации: полеты на скоростях, превышающих скорость звука, создание самолетов с высокой грузоподъемностью, а также сделали возможным массовые путешествия на большие расстояния. Турбореактивный двигатель по праву считается одним из самых важных механизмов ушедшего века, несмотря на простой принцип работы.
История
Первый самолет братьев Райт, самостоятельно оторвавшийся от Земли в 1903 году, был оснащен поршневым двигателем внутреннего сгорания. И на протяжении сорока лет этот тип двигателя оставался основным в самолетостроении. Но во время Второй мировой войны стало ясно, что традиционная поршнево-винтовая авиация подошла к своему технологическому пределу – как по мощности, так и по скорости. Одной из альтернатив был воздушно-реактивный двигатель.
Идею применения реактивной тяги для преодоления земного притяжения впервые довел до практической осуществимости Константин Циолковский. Еще в 1903 году, когда братья Райт запускали свой первый самолет «Флайер-1», российский ученый опубликовал труд «Исследование мировых пространств реактивными приборами», в котором разработал основы теории реактивного движения. Опубликованная в «Научном обозрении» статья утвердила за ним репутацию мечтателя и не была воспринята всерьез. Циолковскому потребовались годы трудов и смена политического строя, чтоб доказать свою правоту.
Реактивный самолет Су-11 с двигателями ТР-1, разработки КБ Люльки
Тем не менее, родиной серийного турбореактивного двигателя суждено было стать совсем другой стране – Германии. Создание турбореактивного двигателя в конце 1930-х было своеобразным хобби немецких компаний. В этой области отметились практически все известные ныне бренды: Heinkel, BMW, Daimler-Benz и даже Porsche. Основные лавры достались компании Junkers и ее первому в мире серийному турбореактивному двигателю 109-004, устанавливаемому на первый же в мире турбореактивный самолет Me 262.
Несмотря на невероятно удачный старт в реактивной авиации первого поколения, немецкие решения дальнейшего развития нигде в мире не получили, в том числе и в Советском Союзе.
В СССР разработкой турбореактивных двигателей наиболее удачно занимался легендарный авиаконструктор Архип Люлька. Еще в апреле 1940 года он запатентовал собственную схему двухконтурного турбореактивного двигателя, позже получившую мировое признание. Архип Люлька не нашел поддержки у руководства страны. С началом войны ему вообще предложили переключиться на танковые двигатели. И только когда у немцев появились самолеты с турбореактивными двигателями, Люльке было приказано в срочном порядке возобновить работы по отечественному турбореактивному двигателю ТР-1.
Уже в феврале 1947 года двигатель прошел первые испытания, а 28 мая свой первый полет совершил реактивный самолет Су-11 с первыми отечественными двигателями ТР-1, разработки КБ А.М. Люльки, ныне филиала Уфимского моторостроительного ПО, входящего в Объединенную двигателестроительную корпорацию (ОДК).
Принцип работы
Турбореактивный двигатель (ТРД) работает по принципу обычной тепловой машины. Не углубляясь в законы термодинамики, тепловой двигатель можно определить как машину для преобразования энергии в механическую работу. Этой энергией обладает так называемое рабочее тело – используемый внутри машины газ или пар. При сжатии в машине рабочее тело получает энергию, а при последующем его расширении мы имеем полезную механическую работу.
При этом понятно, что работа, затрачиваемая на сжатие газа должна быть всегда меньше работы, которую газ может совершить при расширении. Иначе никакой полезной «продукции» не будет. Поэтому газ перед расширением или во время него нужно еще и нагревать, а перед сжатием – охладить. В итоге за счет предварительного нагрева энергия расширения значительно повысится и появится ее излишек, который можно использовать для получения необходимой нам механической работы. Вот собственно и весь принцип работы турбореактивного двигателя.
Таким образом, любой тепловой двигатель должен иметь устройство для сжатия, нагреватель, устройство для расширения и охлаждения. Все это есть у ТРД, соответственно: компрессор, камера сгорания, турбина, а в роли холодильника выступает атмосфера.
Рабочее тело – воздух, попадает в компрессор и сжимается там. В компрессоре на одной вращающейся оси укреплены металлические диски, по венцам которых размещены так называемые «рабочие лопатки». Они «захватывают» наружный воздух, отбрасывая его внутрь двигателя.
Далее воздух поступает в камеру сгорания, где нагревается и смешивается с продуктами сгорания (керосина). Камера сгорания опоясывает ротор двигателя после компрессора сплошным кольцом, либо в виде отдельных труб, которые называются жаровыми трубами. В жаровые трубы через специальные форсунки и подается авиационный керосин.
Из камеры сгорания нагретое рабочее тело поступает на турбину. Она похожа на компрессор, но работает, так сказать, в противоположном направлении. Ее раскручивает горячий газ по тому же принципу, как воздух детскую игрушку-пропеллер. Ступеней у турбины немного, обычно от одной до трех-четырех. Это самый нагруженный узел в двигателе. Турбореактивный двигатель имеет очень большую частоту вращения – до 30 тысяч оборотов в минуту. Факел из камеры сгорания достигает температуры от 1100 до 1500 градусов Цельсия. Воздух здесь расширяется, приводя турбину в движение и отдавая ей часть своей энергии.
После турбины – реактивное сопло, где рабочее тело ускоряется и истекает со скоростью большей, чем скорость встречного потока, что и создает реактивную тягу.
Поколения турбореактивных двигателей
Несмотря на то, что точной классификации поколений турбореактивных двигателей в принципе не существует, можно в общих чертах описать основные типы на различных этапах развития двигателестроения.
К двигателям первого поколения относят немецкие и английские двигатели времен Второй мировой войны, а также советский ВК-1, который устанавливался на знаменитый истребитель МИГ-15 и на самолеты ИЛ-28, ТУ-14.
Истребитель МИГ-15
ТРД второго поколения отличаются уже возможным наличием осевого компрессора, форсажной камеры и регулируемого воздухозаборника. Среди советских примеров двигатель Р-11Ф2С-300 для самолета МиГ-21.
Двигатели третьего поколения характеризуются увеличенной степенью сжатия, что достигалось увеличением ступеней компрессора и турбин, и появлением двухконтурности. Технически это самые сложные двигатели.
Появление новых материалов, которые позволяют значимо поднять рабочие температуры, привело к созданию двигателей четвертого поколения. Среди таких двигателей – отечественный АЛ-31 разработки ОДК для истребителя Су-27.
Сегодня на уфимском предприятии ОДК начинается выпуск авиационных двигателей пятого поколения. Новые агрегаты установят на истребитель Т-50 (ПАК ФА), который приходит на смену Су-27. Новая силовая установка на Т-50 с увеличенной мощностью сделает самолет еще более маневренным, а главное – откроет новую эпоху в отечественном авиастроении.
События, связанные с этим
Объем реализации продукции ОДК вырос за год на 15-17%
Основные технические параметры реактивного двигателя
Основным техническим параметром, характеризующим реактивный двигатель, является тяга (иначе — сила тяги) — усилие, которое развивает двигатель в направлении движения аппарата.
Ракетные двигатели помимо тяги характеризуются удельным импульсом, являющимся показателем степени совершенства или качества двигателя. Этот показатель является также мерой экономичности двигателя. В приведённой ниже диаграмме в графической форме представлены верхние значения этого показателя для разных типов реактивных двигателей, в зависимости от скорости полёта, выраженной в форме числа Маха, что позволяет видеть область применимости каждого типа двигателей. ПуВРД — Пульсирующий воздушно-реактивный двигатель, ТРД — Турбореактивный двигатель, ПВРД — Прямоточный воздушно-реактивный двигатель, ГПВРД — Гиперзвуковой прямоточный воздушно-реактивный двигатель
Устройство реактивных двигателей довольно-таки простое и в то же время чрезвычайно сложное. Оно простое по принципу действия. Так, забортный воздух (в ракетных двигателях – жидкий кислород) засасывается в турбину. После чего он там начинает смешиваться с горючим и сгорать. На краю турбины образуется так называемое «рабочее тело» (ранее упоминаемая реактивная струя), которое продвигает летательный или космический аппарат.
При всей простоте, на самом деле это целая наука, ведь в середине таких двигателей рабочий температурный режим может достигать более тысячи градусов по Цельсию. Одной из важнейших проблем в турбореактивном двигателестроении является создание неплавящихся деталей из металлов, которые сами поддаются плавлению.
Двигатели для баллистических и космических ракет
С 1946 года Глушко был назначен главным конструктором ОКБ-456 в Химках (сейчас НПО «Энергомаш» — главный разработчик и производитель российских ракетных двигателей — прим. ТАСС). Здесь под его руководством созданы двигатели для первых советских баллистических ракет Р-1, Р-2 и Р-5.
В 1954–1957 годах коллектив ОКБ-456 разработал жидкостные ракетные двигатели РД-107, которые впоследствии будут устанавливаться на знаменитую ракету Р-7, сконструированную коллективом ОКБ-1 под руководством Королева, так называемую королевскую семерку. Это была первая в мире полноценная межконтинентальная баллистическая ракета с максимальной дальностью полета 8 тыс. км и одним термоядерным зарядом мощностью 3 мегатонны. Первый запуск Р-7 состоялся 15 мая 1957 года, на вооружение Ракетных войск стратегического назначения она была принята в январе 1960-го.
На базе Р-7 был создано целое семейство ракет космического назначения. В частности, знаменитый «Восток», на котором 12 апреля 1961 года в космос отправился Юрий Гагарин. Модификации этой ракеты используются до сих пор — с грузовыми кораблями и спутниками в космос стартуют ракеты серии «Союз-2», с пилотируемыми — «Союз-ФГ» (со следующего года запуски космонавтов будут переведены на «Союз-2»). До сих пор на этих ракетах используются модификации двигателей, разработанных Глушко: версии РД-107 для боковых и центрального блока первой ступени и варианты РД-108 — для второй ступени.
Также сотрудники ОКБ-456 под руководством Глушко создали двигатель РД-253, который с изменениями и сейчас используется в самой массовой серии советских и российских тяжелых грузовых ракет «Протон». Последний вариант — «Протон-М» — использует на первой ступени шесть двигателей РД-276, которые являются глубокой модернизацией РД-253 Глушко.
Параллельно известный конструктор работал над двигателями для советских баллистических ракет, появившихся после Р-7. В частности, самая мощная на сегодняшний день и стоящая на вооружении РВСН тяжелая межконтинентальная ракета «Воевода» использует на первой ступени двигатель РД-264, разработанный при непосредственном участии Глушко.
Первые реактивные самолеты
Первый двигатель Уиттла
Изобретателем турбореактивного двигателя является англичанин Френк Уиттл. В 1928 году он, будучи слушателем авиационной школы, предложил первую модель двигателя с газовой турбиной и в 1930 году получил на него патент.
Изобретение не привлекло к себе внимания правительства и Уиттл был вынужден искать другого источника финансирования своих разработок. В 1937 году, благодаря поддержке нескольких частных фирм, был изготовлен первый в мире турбореактивный двигатель. Он был разработан по проекту Уиттла компанией «Бритиш-Томсон-Хаустон». После этого правительство решило финансировать разработки Уиттла.
Двигатель Охайна
В то же время немецкий изобретатель Охайн разработал свой турбореактивный двигатель (который по конструкции был очень похож на двигатель Уиттла). Будучи еще студентом, он в 1936 году запатентовал свое изобретение и уже в 1938 году фирма «Хейнкель» приступила к разработке двигателя по его проекту. 27 августа 1939 года первый реактивный самолет Не-178, оснащенный двигателем HeS-3В, совершил успешный полет. Самолет все еще имел деревянные крылья, но фюзеляж был изготовлен из дюралюминия. Двигатель работал на бензине и развивал тягу до 500 кг. Максимальная скорость самолета достигала 700 км/ч.
В 1941 году Охайн разработал новую модель двигателя с тягой 600 кг. Самолет, оснащенный двумя такими двигателями, развивал скорость до 925 км/ч. Но двигатель оказался не очень надежным, потому истребитель не был запущен в серийное производство (было изготовлено только 8 таких самолетов).
«Глостер G-40»
В том же 1941 году фирма «Бритиш-Томсон-Хаустон» выпустила самолет «Глостер G-40» с специально разработанным для него двигателем. В мае самолет совершил свой первый полет и оказался значительно хуже немецкого – он мог развивать скорость всего 480 км/ч. В 1943 году свет увидел второй «Глостер G-40»(с улучшенным двигателем), но и он не мог равняться с изобретениями Охайна – максимальная скорость самолета была всего 500 км/ч.
Производство самолетов с турбореактивными двигателями выглядело перспективным делом и вскоре несколько английских фирм начали производить модификации двигателей Уиттла. Фирма «Ровер» изготовила двигатели W2D/23 и W2D/26, а «Роллс-Ройс», выкупив их, представила свои модели – «Уэллэнд» и «Дервент».
Первое серийное производство турбореактивных самолетов
Messerschmitt Me 262
Первым в мире турбореактивным серийным самолетом стал немецкий «Мессершмитт» Ме-262. Он имел два двигателя с тягой 900 кг и развивал скорость до 845 км/ч. Первый самолет испытывался в 1942 году, а всего было выпущено 1300 таких машин.
Первый английский реактивный серийный самолет появился в 1943 году. Это был «Глостер G-41 Метеор», оснащенным двумя двигателями «Дервент». Он развивал скорость до 760 км/ч и летал на высоте 9000 м. Позже были выпущены самолеты с более сильными двигателями (с тягой 1600 кг), что позволило развивать скорость до 935 км/ч. Самолет очень хорошо себя зарекомендовал и производился до конца 40-х годов.