Toyota-navi.ru

АвтоКлуб Toyota
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

В какую сторону должен вращаться вентилятор охлаждения двигателя

В какую сторону должен крутиться кулер

Для того чтобы конденсатор работал в оптимальном режиме, рекомендованном в техпаспорте, при определении направления вращения вентилятора необходимо следовать предписаниям разработчика.

Таким образом, обдувающий вентилятор поток воздуха выбирается конструктором для улучшения переохлаждения и увеличения коэффициента теплообмена с учетом направления движения хладагента и охлаждающего его потока воздуха согласно принципу противотока.

В итоге получается, что указанное конструктором направление потока воздуха конденсатора должно строго соблюдаться, поскольку, в противном случае, его мощность будет ниже предусмотренной. Если мощность конденсатора снизится, то это станет причиной значительного снижения полного температурного перепада, сопровождающегося неисправностью «слишком слабый конденсатор» (в особенности в первые дни потепления) (рис. 26.11).

Если воздушный конденсатор оборудован осевым вентилятором, то при вращении в обратную сторону изменится направление потока воздуха, проходящего через него, что и приведет к вышеописанным признакам.

Устранить данный дефект достаточно непросто, поскольку в конденсаторе с осевым вентилятором направление движения воздуха зависит только от направления вращения двигателя.

В случае, когда конденсатор оборудован центробежным вентилятором, то направление циркуляции воздуха не зависит от направления вращения двигателя. Данная закономерность объясняется тем, что в центробежном вентиляторе всасывание происходит в центре улитки, независимо от направления вращения. При вращении центробежного вентилятора в обратную сторону направление потока воздуха остается неизменным, но его расход резко снизится, что приведет к появлению признаков неисправности «слишком слабый конденсатор» (рис.26.12).

Исходя из этого, осуществлять контроль вращения вентилятора необходимо визуально и в случае с осевым вентилятором не следует полагаться только на направление движения воздуха.

Отдельно следует сказать о конденсаторе, оборудованном осевым вентилятором, который не защищен от действия сильных ветров. Дело в том, что когда конденсатор остановлен, сильный порыв ветра может поменять направление вращения его лопастей. Если вентилятор начал вращаться в обратном направлении, возможно несколько вариантов развития ситуации:

  • вентилятор снабжен трехфазным двигателем. Известно, что вращение трехфазного двигателя зависит от схемы подключения его обмоток к электрической сети. Если по причине ветра двигатель начал вращаться в обратном направлении, то пусковой момент сопротивления вентилятора резко увеличивается. Причем это повышение будет зависеть от скорости вращения вентилятора в обратном направлении, что станет причиной увеличения времени запуска.

Преимущественно, трехфазный двигатель затормаживает вращение вентилятора в обратном направлении и заставляет его вернуться в правильный режим, несмотря на возникающую при этом электрическую перегрузку, термореле не срабатывает;

  • вентилятор оборудован однофазным двигателем. В данном варианте пусковой момент преимущественно слабый и возникает вероятность того, что после включения в сеть вентилятор станет вращаться в том же направлении, что и в выключенном состоянии – в обратном. Таким образом, располагая конденсатор воздушного охлаждения, следует предусмотрительно учитывать преобладающее направление ветров, чтобы избежать возникновения проблем в дальнейшем.

Если возникают сомнения, то лучше использовать трехфазные двигатели вместе с центробежными вентиляторами.

на процессор или от процессора?

Если охладительная система вашего компьютера расположена так, что установленный на ней кулер может дуть либо «в материнскую плату» или «от неё», то нужно установить кулер так, что бы он дул на материнскую плату.

Если охладительная система расположена так, что установленный на ней кулер может дуть «в заднюю стенку или «в переднюю» вашего корпуса, то нужно установить кулер, а соответственно и охладительную систему так, что бы куллер дул в заднюю стенку компьютера, на которой установлен кулер который выдувает воздух из корпуса. Соответственно воздух который будет дуть в охладительную систему, будет проходить через нее, а после будет подхватываться кулером установленным на задней стенке корпуса, и выходить «вон».

Если есть возможность установки 2 кулера на охладительную систему , то его нужно установить так, что бы он как бы высасывал воздух из охладительной системы а после направлял как кулер установленный на задней стенке корпуса. Так же в новых корпусах блок питания находиться снизу, что позволяет установить кулера на охладительной системе, и саму охладительную систему так, что бы она дула в верхнюю стенку корпуса, на которой в свою очередь установлен кулер который выдувает воздух из корпуса вверх. Но если у вас большая охладительная система, например скутхе нинджа v3. То вы сможете устоновить её только так, что бы поток воздуха дул на заднюю стенку, потому что видюха не позволит вам устоновить её по другому.. Вообщем нужно смотреть на конкретном примере.

Устройство компьютера довольно сложное – он состоит из множества блоков, каждый из которых выделяет много тепла. Перегрев любого из них может привести в лучшем случае к неправильной работе и аварийному выключению компьютера, в худшем – к выходу из строя. Особенно сильно нагреваются процессор, видеокарта, микросхемы северного и южного моста на материнской плате. Но и прочие узлы также греются – например, винчестер при активной работе нагревается весьма ощутимо. Поэтому компьютер нуждается в охлаждении.

Порядок установки вентиляторов в корпус компьютера.

Основные характеристики вентиляторов

Статическое давление — напор воздуха, создаваемый вентилятором. Зависит от его конструкции и скорости вращения крыльчатки. Чем выше этот показатель, тем лучше работает вентилятор в условиях большого сопротивления (например, при прокачке воздуха через мелкоячеистый радиатор).

Воздушный поток (CFM) — количество прокачиваемого воздуха. Исторически сложившиеся единицы измерения — кубические футы в минуту. Эффективную работу показывают устройства с CFM больше 50.

Скорость вращения (RPM) — количество оборотов в минуту. Чем больше, тем выше производительность (и шум). У большинства моделей не превышает 2000.

Широтно-импульсная модуляция (ШИМ, или PWM) — автоматическая регулировка оборотов вентилятора с помощью материнской платы. Требует разъема 4 pin. Провести точную настройку можно с помощью специальных фирменных утилит.

ASUS Fan Expert

Толщина вентилятора — обычно составляет около 25 мм. Для небольших корпусов (HTPC) выпускаются более тонкие версии, однако их эффективность ниже ввиду более слабого статического давления и CFM.

Тип подшипника — важная характеристика, от которой зависит ресурс и уровень создаваемого шума. В современных моделях можно встретить несколько видов: от самого дешевого подшипника скольжения (с низким ресурсом) до самых дорогих и редких керамического подшипника качения и подшипника с магнитным центрированием. Золотой серединой по ресурсу, цене и шуму являются вертушки с гидродинамическим подшипником.

Уровень шума — измеряется в дБА. Значение, комфортное для человеческого уха, не должно превышать 30 дБА. Больше вентиляторов — не значит шумнее. Чаще всего дело обстоит наоборот, особенно если вентиляторами управляет материнская плата, контролирующая температуру компонентов.

  • 0–25 дБА — бесшумный ПК;
  • 25–35 дБА — шум на уровне дневного фонового;
  • 35–40 дБА — ощутимый уровень шума (можно снизить, переместив компьютер под стол);
  • 40 дБА и выше — громкий и некомфортный уровень шума.
Читать еще:  Что может шуршать в двигателя с правой стороны

Назначение и особенности конструкции вентиляторов

Вентилятор служит для увеличения потока воздуха через сердцевину радиатора. Как правило, он устанавливается непосредственно за радиатором по ходу движения автомобиля. Такое размещение исключает попадание в вентилятор крупных частиц и предметов, задерживаемых сотами радиатора.
Для увеличения эффективности работы вентилятора его размещают в направляющем кожухе – диффузоре.

Для работы вентилятора расходуется значительная доля мощности, развиваемой двигателем – до 5 % (для сравнения – жидкостный насос отнимает у двигателя до 1 % мощности).
Тем не менее, без этого элемента системы охлаждения не обойтись – отказавшись от вентилятора, конструкторам пришлось бы существенно увеличить теплообменную площадь радиатора. А это повлекло бы за собой увеличение габаритов радиатора, его материалоемкость, дополнительный объем охлаждающей жидкости в системе и, как следствие — повышение производительности жидкостного насоса и расходуемой им мощности двигателя.
Как видите, благодаря применению вентилятора можно избавиться от многих проблем технического и экономического характера.

Наибольшее распространение получили осевые вентиляторы (направляющие воздух вдоль оси своего вращения) с числом лопастей от четырех до восьми. Лопасти вентилятора изготавливают литьем, выполняя их совместно со ступицей, или штамповкой, соединяя их со ступицей при помощи клепаного соединения.
Литые лопасти изготавливают из синтетических материалов (пластмасс), а штампованные – из стали или алюминиевых сплавов. Литые вентиляторы имеют более высокий КПД по сравнению со штампованными, но последние проще в изготовлении.

Повысить производительность осевого вентилятора можно несколькими способами – увеличением длины и количества лопастей, а также повышением частоты вращения. Увеличение длины лопастей неизбежно приводит к увеличению динамических нагрузок, особенно при высокой или переменной частоте вращения вентилятора.
Динамическими перегрузками ограничивается и максимальная частота вращения вентилятора.
Увеличение количества лопастей приводит к повышению уровня шума, вызываемого работой вентилятора.
По этим причинам конструкторам, при проектировании, приходится решать ряд комплексных взаимосвязанных задач по определению оптимальных параметров вентиляторов и их приводов.

Некоторые конструкции систем охлаждения двигателей включают два вентилятора, которые устанавливаются за радиатором рядом. Такая конструкция позволяет снизить высоту или ширину радиатора, а также более гибко использовать возможности автоматических приводов, включая вентиляторы раздельно, совместно, или выключая их.

Для снижения уровня шума при работе вентилятора их лопасти размещают вокруг ступицы неравномерно, с переменным шагом. Подобное конструктивное решение требует тщательной балансировки вентилятора при помощи специальных грузиков и перераспределения масс.

Типы приводов вентиляторов

Существуют следующие приводы вентиляторов:

  • клиноременные (наиболее распространенные);
  • зубчатые (от зубчатого колеса ГРМ);
  • фрикционные;
  • электрические;
  • электромагнитные;
  • гидравлические.

Электрический привод устроен относительно просто, и включает в себя электродвигатель, который включается и выключается автоматически в зависимости от температуры охлаждающей жидкости в радиаторе, контролируемой термодатчиком. Непосредственно на валу электродвигателя размещают вентилятор.
При использовании резисторного температурного датчика (изменяющего напряжение и ток в зависимости от температуры двигателя) появляется возможность изменения интенсивности потока воздуха, создаваемого вентилятором. Однако такие конструкции широкого применения не нашли, поскольку вентилятор при этом почти постоянно работает, создавая ненужный шум.

Электромагнитный привод имеет электромагнитную муфту ( рис. 2 ), совмещенную с жидкостным насосом. Она состоит из электромагнита 6, установленного вместе со шкивом 1 на ступице 5 насоса и ступицы 3 вентилятора, соединенной пластинчатой пружиной с якорем, свободно вращающимся вместе со ступицей на двух шарикоподшипниках.

Катушка электромагнита соединена с тепловым реле, датчик которого расположен в верхнем бачке радиатора. При температуре охлаждающей жидкости в верхнем бачке радиатора 85…90 ˚С тепловое реле подает ток в катушку электромагнита. Якорь притягивается к электромагниту, и ступица вместе с лопастями вентилятора начинает вращаться.
Когда температура снизится до 80 ˚С, контакты реле разомкнутся и вентилятор отключится.

Гидравлический привод реализуется посредством гидромуфты, которая передает крутящий момент от коленчатого вала к вентилятору и гасит инерционные нагрузки, возникающие при резком изменении частоты вращения коленчатого вала.

На рис. 3 изображена конструкция гидропривода вентилятора двигателя КамАЗ-740.
Передняя крышка 1 и корпус 2 подшипника соединены винтами и образуют полость, в которой установлена гидромуфта.
Ведущий вал 6 в сборе с кожухом 3, ведущее колесо 10, вал 12 шкива и шкив 11 соединены между собой болтами и составляют ведущую часть гидромуфты, которая вращается в шарикоподшипниках 8 и 19.
Ведущая часть гидромуфты приводится во вращение от коленчатого вала через шлицевой валик 7.
Ведомое колесо 9 в сборе с валом 16, на котором закреплена ступица 15 вентилятора, составляет ведомую часть гидромуфты, вращающуюся в шарикоподшипниках 4 и 13.
Гидромуфта уплотнена резиновыми манжетами 17 и 20.

На внутренних тороидальных поверхностях ведущего и ведомого колес отлиты радиальные лопатки. Межлопаточное пространство колес образует рабочую полость гидромуфты.

Передача крутящего момента с ведущего колеса 10 на ведомое колесо 9 происходит при заполнении рабочей полости маслом. Частота вращения ведомого колеса гидромуфты зависит от частоты вращения ведущего колеса и от количества масла, поступающего в рабочую полость гидромуфты.

Масло поступает через выключатель ( рис. 4 ), который управляет работой гидромуфты вентилятора. Выключатель имеет три фиксированных положения, обеспечивающих различные режимы работы вентилятора.

Положение «В» ( рис. 4,а ) – автоматический режим, при котором поддерживается температура 80…95 ˚С.
При повышении температуры охлаждающей жидкости, омывающей термосиловой датчик 15, активная масса, находящаяся в баллончике датчика, начинает плавиться и увеличивается в объеме, при этом шток датчика и золотник 5 перемещаются.
Золотник при температуре 85…90 ˚С открывает масляный канал в корпусе 2 выключателя. Масло из главной магистрали смазочной системы двигателя по каналам в корпусе выключателя, блока и его передней крышке, трубке 5 ( рис. 3 ) и каналам в ведущем валу поступает в рабочую полость гидромуфты. При этом находящееся в гидромуфте масло через отверстие в кожухе 3 сливается в картер двигателя.

Положение «О» ( рис. 4 ) – вентилятор отключен. Масло в гидромуфту не подается при любой температуре. Вентилятор может вращаться с небольшой частотой, увлекаемый трением в подшипниках и набегающим встречным потоком воздуха при движении автомобиля. Этот режим может применяться при эксплуатации автомобиля в период низких температур, когда двигатель не прогревается до оптимального режима работы.
Особенно актуальна возможность принудительного отключения вентиляторов при низких температурах окружающей среды для дизельных двигателей, которые обычно нагреваются медленнее, чем бензиновые двигатели.

Положение «П» — вентилятор включен постоянно. В гидромуфту постоянно подается масло независимо от температуры двигателя. Такой режим работы гидромуфты используется при работе двигателя в жаркую погоду, когда необходимо его эффективное охлаждение.

Некоторой разновидностью гидравлического привода вентиляторов системы охлаждения является вязкостная муфта , принцип работы которой основан на снижении вязкости некоторых жидкостей при нагревании и повышении вязкости при охлаждении.
Вязкостные муфты в автоматическом режиме включают или выключают вентилятор в зависимости от температуры двигателя и изменении вязкости жидкости в рабочем объеме муфты. Кроме того, при использовании таких муфт вентилятор может работать с разной эффективностью, опять же, в зависимости от вязкости рабочей жидкости.

Читать еще:  Где находится датчик температуры двигателя опель корса

Преимущества и недостатки автоматических приводов вентилятора

Как показывает практика, во время работы автомобильного двигателя применение вентилятора для повышения эффективности системы охлаждения требуется далеко не всегда. Он необходим лишь при жаркой погоде и движении в напряженном режиме нагрузок, например, движении в городском потоке машин, на длительных подъемах, при полностью загруженном автомобиле и т. п.
В других условиях вентилятор выгоднее отключить, поскольку он не только отнимает полезную мощность у двигателя, но и создает шум.

Гидравлический, электрический и электромагнитный приводы вентилятора, в отличие от механического (ременного или зубчатого) привода, обеспечивают более выгодный температурный режим двигателя. Их применение позволяет избежать охлаждения непрогретого двигателя вентилятором, а также уменьшить потери мощности из-за рационального использования вентилятора, благодаря чему снижается расход топлива.
Кроме того, использование автоматических приводов делает управление автомобилем более комфортным, поскольку отпадает необходимость в применении жалюзи для регулировки воздушного потока через радиатор.

Использование автоматического привода вентилятора позволяет добиться снижения уровня шума при движении в оптимальном режиме, что особенно актуально для легковых автомобилей.

Еще одно немаловажное достоинство электрического, электромагнитного и гидравлического привода вентилятора – исключение значительных динамических нагрузок на лопасти, имеющее место при использовании прямых механических приводов от коленчатого вала в периоды резкого изменения частоты вращения.

Тем не менее, автоматика не лишена и некоторых недостатков, из которых наиболее существенным является усложнение конструкции привода вентилятора, что приводит к увеличению его стоимости и снижению надежности.

Применение температурных датчиков и клапанов не всегда позволяет включать и отключать вентилятор точно при достижении заданной температуры в связи с некоторой погрешностью их работы, однако этот недостаток в большинстве конструкций автомобильных двигателей существенным не является.

Кроме того, электрический привод управления вентилятором имеет еще один недостаток – включение электродвигателя привода вентилятора при помощи управляющего датчика возможно даже при заглушенном двигателе, если температура охлаждающей жидкости не снизилась до оптимальной величины.
Это, в свою очередь, требует от водителя внимательности при техническом обслуживании двигателя – осуществлять ремонт и регулировки вблизи вентилятора можно лишь убедившись в том, что двигатель остыл. Электромагнитный и гидравлический приводы этого недостатка не имеют.

Применение гидравлического привода вентилятора влечет за собой некоторое увеличение объема смазочной системы двигателя за счет использования масла для работы гидромуфты.

Тем не менее, преимущества автоматических приводов вентиляторов значительно перекрывают их недостатки, и в настоящее время они практически полностью вытеснили механические приводы, особенно в конструкциях систем охлаждения двигателей легковых автомобилей.

Почему включается вентилятор при выключенном моторе и другие неисправности

Обычно подобный дефект свидетельствует о том, что температурный датчик перестал функционировать. Но для того чтобы сделать какой-либо конкретный вывод понадобится провести более полную диагностику.

Чтобы провести первичную диагностику снимите штекерный разъём. Он находится на температурном датчике. После чего путём замыкания проверьте состояние клемм. Для этого вам понадобится кусок проволоки.

В двойном термодатчике сперва нужно замкнуть красно-белый и красный кабеля, затем красный и чёрный. В первом случае крыльчатка будет вращаться медленно, а во втором быстро. Если ничего не происходит вентилятор нужно заменить.

Вопрос по вентилятору охлаждения двигателя

  • Страница 1 из 4
  • 1
  • 2
  • 3
  • Далее
  • »
  • Тема закрыта

#1

  • Наверх

#2

  • Почетные омегаводы
  • 3 389 Сообщений:
    • Пол: Мужчина
    • Характеристики автомобиля: OOB ’95, АКПП, X20XEV-> BMW E39 525i
    • Имя: Игрик, Игорь
    • Город: Москва
    • Наверх

    #3

  • Омегаводы
  • 1 005 Сообщений:
    • Пол: Мужчина
    • Характеристики автомобиля: Опель Омега А, 1987 года, АКПП, C 20 NE продана в связи с отъездом в Германию, сейчас пешеход.
    • Имя: Артур

    Тогда вопрос зададим подругому, а система охлаждения вообще как устроена, а? Например возьмем систему с электрическим вентилятором. Вентилятор включается при определенной температуре РАДИАТОРА и именно радиатора, т.к. датчик включения вентилятора вставляется в радиатор. И что же охлаждает при включении вентилятор? Не радиатор ли? При включении термостата горячая смесь направляется в радиатор, он ведь так и называется «радиатор охлождения», а охлождает радиатор вентилятор, поэтому ну не должен он никак дуть на двигатель. Двигатель охлаждается через систему охлождения, а именно через радиатор обдуваемый вентилятором и уж точно не самим вентилятором напрямую направленным на двигатель это вкорне не эффективно и неправильно.

    Так что извините Игорь, но здесь вы неправы.

    • Наверх

    #4

  • Омегаводы
  • 1 623 Сообщений:
    • Пол: Мужчина
    • Характеристики автомобиля: opel omega a,1989,мкпп,c24ne(была) 5 е39-пока доволен
    • Имя: андрей
    • Город: 60rus
    • Наверх

    #5

  • Омегаводы
  • 427 Сообщений:
    • Пол: Мужчина
    • Характеристики автомобиля: OOA-3000, 1991, C30SE, МКПП, седан
    • Имя: Igor
    • Город: Arkhangelsk
    • Наверх

    #6

    Здрасти приехали, конечно в сторону двигателя Почему это не эффективно? воздух куда идет при езде? в сторону двигателя или наружу? Внутри воздух горячий, снаружи холодный — откуда эффективней воздух брать снаружи или изнутри? Вообще странный вопрос, не ожидал такого услышать

    • Наверх

    #7

  • Омегаводы
  • 1 283 Сообщений:
    • Пол: Мужчина
    • Характеристики автомобиля: OOA. 1990.C20NE.ГБО, .OOB.1996.АКПП.X30XE.ГБО4.. Гольф МК 1,АКПП, Ява капля 1972,vauxhall вектра,теперь опель.2.2dti
    • Имя: Алексей
    • Город: Пинск Беларусь
    • Наверх

    #8

    • Наверх

    #9

  • Омегаводы
  • 285 Сообщений:
    • Пол: Мужчина
    • Характеристики автомобиля: Opel Omega A, 1987, МКП, C20NE
    • Наверх

    #10

  • Почетные омегаводы
  • 3 389 Сообщений:
    • Пол: Мужчина
    • Характеристики автомобиля: OOB ’95, АКПП, X20XEV-> BMW E39 525i
    • Имя: Игрик, Игорь
    • Город: Москва

    вообще-то при езде воздух через переднюю решетку почти не попадает на радиатор!

    да уж конечно

    До Омеги у меня был Форд Скорпио, тае вот у него вентилятор дул на радиатор. а не на двигатель

    • Наверх

    #11

  • Омегаводы
  • 1 005 Сообщений:
    • Пол: Мужчина
    • Характеристики автомобиля: Опель Омега А, 1987 года, АКПП, C 20 NE продана в связи с отъездом в Германию, сейчас пешеход.
    • Имя: Артур

    Так, я вроде очень подробно описал всю систему охлождения двигателя. Народ, да вы что, а если машина стоит и молотит на холостых примерно с час тогда что двигатель охлождать будет, она ведь не едит, воздух не поступает, а? Когда машина стоит поставьте руку перед решеткой радиатора и посмотрите куда дует. Да вы что, повторю еще раз, РАДИАТОР ОХЛОЖДЕНИЯ называется так потому-что охлождает жидкость для охлождения двигателя, тосол или антифриз называется если кто незнал. Ведь радиатор для того и поставили чтобы охлождал, а если радиатор ничего не будет охлождать (обдувать), то температура ну не упадет сама просто протекая по радиатору, для этого и поставили вентилятор для охлождения радиатора. Вентилятор охлождает не сам двигатель, а жидкость протекающую по радиатору охлождения, ну народ включите логику, прочитайте внимательно мои посты, ну уж если мне не верите, то я сейчас полазию в нете и пару ссылочек вам дам для ознакомления. Чес слово даже не ожидал что по такому простому вопросу могут быть какие-то прения, ведь все понятно и логично.

    Читать еще:  Ваз 2107 инжектор шум при работе двигателя

    Конечно если поставить вентилятор перед радиатором, после радиаторной решетки, тогда конечно он будет дуть в сторону двигателя.

    Могу с любым поспорить что вентилятор должен дуть именно на радиатор охлождения, а не на двигатель напрямую. Принимаю ставки, начнем со 100 баксов.

    Если кто-то считает что я неправ, обоснуйте пожалуйста, ну хотя бы в кратце как это сделал я.

    Антон прав, если на машине стоит воздушное охлождение, т.е. нет охлождающей жидкости, то вентилятор будет дуть на двигатель напрямую. Если есть ОЖ, то на радиатор охлождения.

    Могу единственное еще добавить (уже мозги кипят), все зависит от того где стоит вентилятор, перед радиатором или после, но дуть он должен полюбому на радиатор. У меня на Форде вентилятор стоит вплотную к радиатору между двигателем и радиатором. А после вентилятора стоит как бы шторка резиновая чтобы воздух не уходил впустую на охлождения всего подкапотного пространства.

    Увеличение/уменьшение скорости вращения кулеров

    Основы, важное примечание

    Вообще, на современном компьютере (ноутбуке) скорость вращения кулеров устанавливает материнская плата, на основе данных от датчиков температуры (т.е. чем она выше — тем быстрее начинают вращаться кулеры ☝) и данных по загрузке.

    Параметры, от которых отталкивается мат. плата, обычно, можно задать в BIOS.

    ☝ В чем измеряется скорость вращения кулера

    Она измеряется в оборотах в минуту. Обозначается этот показатель, как rpm (к слову, им измеряются все механические устройства, например, те же жесткие диски) .

    Что касается, кулера, то оптимальная скорость вращения, обычно, составляет порядка 1000-3000 rpm. Но это очень усредненное значение, и сказать точное, какое нужно выставить — нельзя. Этот параметр сильно зависит от типа вашего кулера, для чего он используется, от температуры помещения, от типа радиатора и пр. моментов.

    Способы, как регулировать скорость вращения:

    1. в настройках BIOS (как в него войти). Этот способ не всегда оправдан, т.к. в BIOS нужно заходить, чтобы изменить те или иные параметры (т.е. тратить время, а изменять значения часто требуется оперативно). К тому же, технологии автоматической регулировки (типа Q-Fan, CPU Fan Control, Fan Monitor, Fan Optimize и т.д.) — не всегда работают оптимально (раскручивая кулер на максимум там, где это ненужно).
    2. физически отключить шумящий кулер или установить реобас (спец. устройство, позволяющее регулировать вращение кулера) . Этот вариант также не всегда оправдан: то отключать кулер, то включать (когда понадобиться), не самая лучшая затея. Тот же реобас — лишние расходы, да и не на каждый компьютер его установишь;

      с помощью специальных утилит. Одна из таких очень известных утилит — это SpeedFan . На мой взгляд, один из самых простых и быстрых вариантов отрегулировать скорость вращения кулеров, установленных на компьютере. В том же BIOS отображаются не все кулеры, например, если оный подключен не к материнской плате. Именно на ней и остановлюсь в этой статье.

    Способ 1: регулировка с помощью SpeedFan (универсальный вариант)

    Бесплатная многофункциональная утилита, позволяющая контролировать температуру компонентов компьютера, а также вести мониторинг за работой кулеров. Кстати, «видит» эта программа почти все кулеры, установленные в системе (в большинстве случаев) .

    Кроме этого, можно динамически изменять скорость вращения вентиляторов ПК, в зависимости от температуры компонентов.

    Все изменяемые значения, статистику работы и пр., программа сохраняет в отдельный log-файл. На основе них, можно посмотреть графики изменения температур, и скоростей вращения вентиляторов.

    SpeedFan работает во всех популярных Windows 7, 8, 10 (32/64 bits) , поддерживает русский язык (для его выбора, нажмите кнопку «Configure», затем вкладку «Options», см. скриншот ниже).

    Выбор русского языка в SpeedFan

    Главное окно и внешний вид программы SpeedFan

    После установки и запуска утилиты SpeedFan — перед вами должна появиться вкладка Readings (это и есть главное окно программы — см. скриншот ниже

    Вопрос: что такое реверс потолочного вентилятора?

    Ответ: функция реверс позволяет выбрать направление вращения двигателя — с предустановленного «против часовой стрелки» на «по часовой».

    Вопрос: Что такое охлаждающий эффект в летний период?

    Ответ: летом охлаждающий и освежающий эффект создается за счет вращения лопастей “против часовой стрелки”. Легкий ветерок от вентилятора отводит нагретый воздух от находящихся в помещении людей, производя эффект, сравнимый с искусственным понижением температуры кондиционером. Если кондиционер уже установлен, то потолочный вентилятор эффективно дополнит его работу, равномерно распределяя по помещению холодный воздух,что позволит уменьшить мощность кондиционера, уровень шума, затраты на электроэнергию, а главное — снизить вред, причиняемый кондиционерами здоровью людей.

    Вопрос: Что такое согревающий эффект в зимний период?

    Ответ: зимой согревающий эффект от работы вентилятора достигается за счет вращения лопастей “по часовой стрелке”. Теплый воздух, подогреваемый отопительными приборами (камином, батареями центрального отопления, конвекторами,“теплым” полом), поднимается наверх к потолку, и концентрируется там, не оказывая должного согревающего эффекта в нижней жилой зоне помещения. Потолочный вентилятор, вращаясь в “зимнем” режиме, равномерно распределяет тепло по всей высоте помещения, при этом существенно повышая уровень комфорта воздушной среды в жилой зоне.

    Вопрос: Как переключается реверс потолочного вентилятора?

    Ответ: все реверсивные потолочные вентиляторы можно поделить на 2 части:

    • вентиляторы, у которых переключение реверса происходит с помощью ручного переключателя, расположенного на корпусе;
    • вентиляторы, у которых переключение реверса происходит с помощью специального пульта ДУ.

    В первом варианте на корпусе устройства расположен ручной переключатель реверса мотора, которым пользователь может изменить направление вращения двигателя-с предустановленного «против часовой стрелки» на «по часовой». Для эффекта охлаждения переключатель «реверса» перемещают в нижнее положение, для эффекта рекуперации тепла зимой — в верхнее положение.

    Во втором варианте при помощи пульта дистанционного управления пользователь может изменить направление вращения двигателя — с предустановленного «против часовой стрелки» на «по часовой». При однократном нажатии на кнопку реверса, расположенную на пульте ДУ, двигатель начинает свое вращение против часовой стрелки, т.е. в режиме охлаждающего эффекта. При повторном нажатии вентилятор начнет вращаться по часовой стрелке, т.е. в режиме согревающего эффекта.

    Вопрос: можно ли переключать «реверс» во время работающего двигателя вентилятора?

    Ответ: категорически нельзя! Перед переключением «реверса» необходимо дождаться полной остановки двигателя. Т.е. мы рекомендуем остановить двигатель вентилятора и только после этого изменить направление вращения на корпусе или на пульте.

    Ссылка на основную публикацию
    ВсеИнструменты
    Adblock
    detector