Toyota-navi.ru

АвтоКлуб Toyota
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Вакуумный двигатель принцип работы будущее применения в автомобилях

Вакуумный двигатель принцип работы будущее применения в автомобилях

Вакуумный двигатель (называемый также пламенно-Licker двигателем, пламенно-двигателем, пламенно-танцор ) получает свою силу от давления воздуха против одной стороны поршня, который имеет частичный вакуум на другой стороне его. В начале хода клапана в головке цилиндра открывается и впускает заряд горючего газа и воздуха, который захватывается закрытием клапана и расширяется. Ближе к концу хода заряд вступает в контакт с охлаждаемой водой или воздухом частью цилиндра и охлаждается, вызывая внезапное падение давления, достаточное для всасывания поршня, который открыт в сторону кривошипа, обратно на возврате. инсульт. Клапан открывается снова вовремя, чтобы поршень вытеснил сгоревшие газы до того, как начнется следующий ход.

  1. Содержание
  2. История
  3. Вакуумный мотор
  4. Идеальный термодинамический процесс
  5. Вакуумный двигатель. Пожиратель пламени.

Двигатель Москвина

Бестопливный двигатель Москвина представляет собой механическое устройство, которое преобразует энергию наружной консервативной силы в кинетическую энергию, которая вращает рабочий вал, без потребления электроэнергии или какого-либо вида топлива. Такие устройства являют собой фактически вечные двигатели, работающие бесконечно долго до тех пор, пока прилагается усилие к рычагам, а детали не изнашиваются в процессе преобразования свободной энергии. В процессе работы бестопливного двигателя образуется бесплатная свободная энергия, потребление которой при подключении генератора является законным.

Новые бестопливные двигатели представляют собой универсальные и экологически чистые приводы для различных механизмов и устройств, которые работают без вредных выбросов в окружающую среду и атмосферу.

Изобретение в Китае безтопливного двигателя сподвигло учёных-скептиков на проведение экспертизы по существу. Несмотря на то, что многие аналогичные запатентованные изобретения находятся под сомнением по причине того, что их работоспособность в силу определённых причин не была проверена, модель бестопливного двигателя полностью работоспособна. Образец устройства позволил получить свободную энергию.

Принцип работы бензиново-электрических гибридных автомобилей

Опубликовано в Электроавтомобили Просмотров: 25275

Как работает гибридный автомобиль? Какие процессы происходят под его капотом во время движения? В этой статье мы поможем вам понять принцип работы гибридной силовой установки.

Любое транспортное средство, использующее в своей работе два или более источника энергии, является гибридом. Огромная часть выпускаемых в наше время автомобилей являются бензиново-электрическими гибридами, силовая установка которых сочетает двигатель внутреннего сгорания и электромотор.

Бензиново-электрические гибридные автомобили — это своеобразный симбиоз автомобилей с бензиновыми двигателями и электромобилей. Различие, как известно, между бензиновыми и электрическими автомобилями заключается в источнике и механизме их питания. В бензиновом автомобиле топливо поступает к двигателю с топливного бака, в электромобиле же электрический мотор обеспечивают электроэнергией аккумуляторные батареи. Можно сказать, что гибридный автомобиль является своеобразным компромиссным вариантом между этими двумя автомобильными механизмами.

Для того, чтобы автомобиль был комфортным для пользователя в процессе эксплуатации, он должен отвечать определенным требованиям. Необходимо чтобы автомобиль был в состоянии:

— обеспечивать большой пробег до момента дозаправки/подзарядки;

— заправлялся быстро и легко.

Бензиновые автомобили отвечают вышеизложенным требованиям, но являются источником значительного загрязнения окружающей среды. Электрические же автомобили в процессе своей работы практически не образуют загрязняющих веществ, однако их пробег на одном заряде аккумуляторных батарей, как правило, не превышает 80-160 км. Главным недостатком электрических автомобилей является довольно продолжительный процесс их подзарядки.

Бензиново-электрические гибридные автомобили сочетают в себе преимущества как электрических, так и бензиновых машин, позволяя объединить в одной системе бензиновое топливо и электроэнергию. Совместное использование двигателя внутреннего сгорания и электродвигателя позволяет значительно повысить топливную эффективность силовой установки транспортного средства, обеспечить быстрое достижение необходимого показателя скорости движения путем практически моментальной подачи энергии, снизить объемы образуемых вредных выхлопов, а также увеличить пробег автомобиля благодаря эффективному функционированию системы рекуперативного торможения, позволяющей преобразовывать кинетическую энергию движения в электроэнергию. К тому же, применение гибридной силовой установки в автомобиле создает возможность уменьшения его суммарного вес по сравнению с бензиновым аналогом.

Широкое использование гибридные автомобилей на дорогах способствует значительному снижению выбросок оксида азота в атмосферу (на 50%), а также сажи и углекислого газа.

Термин «гибридный автомобиль», чаще всего применяется к средствам передвижения, сочетающим в своей конструкции двигатель внутреннего сгорании и один или несколько электродвигателей. Однако, не исключена возможность использования в гибридных автомобилях и иных источников питания, помимо бензина и электроэнергии. В последнее время ряды гибридных автомобилей начали пополняться гибридными моделями, механизм работы которых предполагает сочетание ДВС и двигателя, работающего на сжатом воздухе, или же электромотора и двигателя, использующего в своей работе энергию солнца, ветра, биологического топлива.

Гибридные автомобили делятся на два вида: умеренные и полные. Движение умеренных гибридов обеспечивается преимущественно работой двигателя внутреннего сгорания, а электромотор при этом используется только в качестве дополнительного тягового механизма (яркий пример — Honda Insight). Полным же гибридам свойственна возможность перемещения исключительно только на одной электротяге, независимо от ДВС.

Наиболее популярными в мире гибридные автомобили — Toyota Prius, Shevrolet Volt, Honda Insight. В модели Toyota Prius реализован следующий механизм: движения автомобиля на низкой скорости (до 40 км/ч) происходит благодаря работе электродвигателя, питаемого литий-ионной аккумуляторной батареей, но при большем разгоне активизируется двигатель внутреннего сгорания, который обеспечивает тягу на высокой скорости. При этом электроника регулирует работу моторов и генератора.

Противоположный механизм работы реализован в гибриде Shevrolet Volt. Передвижение этого автомобиля происходит благодаря электродвигателю, функции же ДВС сводятся только к подзарядке его аккумуляторных батарей.

Для гибридных автомобилей свойствен механизм рекуперации энергии при торможении – электрический двигатель переходит в режим генератора, преобразующего кинетическую энергию в электрическую, которая способствует восполнению заряда аккумуляторных батареи.

Схемы подключения двигателей гибридного автомобиля:

— Последовательная схема – маломощный ДВС соединен только с генератором электроэнергии, а электрический двигатель — с колесами. ДВС приводит в движение небольшой генератор электрического тока, вырабатываемая электроэнергия от которого поступает к аккумуляторным батареям, обеспечивающим питание электрического мотора. При такой схеме подключения, ДВС никогда непосредственно не приводит транспортное средство в движение, и главным силовым механизмом является электромотор. Конструкция подобных гибридных автомобилей предполагает использование аккумуляторов увеличенной емкости. Данная схема подключения двигателей была использована в первых гибридных автомобилях, сконструированных Фердинандом Порше. На сегодняшний день представителями Plug-in Hybrid являются модели Chevrolet Volt, Opel Ampera.

Читать еще:  Характеристика однофазного асинхронного двигателя к однофазной сети

— Параллельная схема – ДВС, электрический двигатель и коробка передач соединяются с помощью автоматических муфт. Данная схема свойственна практически для всех умеренных гибридов и для ряда полных (например, Audi Duo). Для гибридный автомобилей с параллельной схемой характерна возможность как одновременного, так и раздельного использования возможностей ДВС и электродвигателя для движения колес. Электрический мотор способствует быстрому разгону транспортного средства, а также обеспечивает выполнение функции рекуперативного торможения. Гибриды с параллельной схемой — Hyundai Elantra Hybrid, Civic Hybrid, BMW Active Hybrid 7, Volkswagen Touareg Hybrid.

— Последовательно-параллельная схема (смешанная) – планетарный редуктор обеспечивает связь ДВС, электрогенератора и электрического двигателя. Яркими примером гибридных автомобилей с последовательно-параллельной схемой (Full Hybrid ) является Toyota Prius, Ford Escape Hybrid, Lexus RX 450h.

Последовательная схема подключения двигателей гибридного автомобиля

Параллельная схема подключения двигателей гибридного автомобиля (слева)

Последовательно-параллельная схема подключения двигателей гибридного автомобиля (справа)

Гибридную силовую установку автомобиля могут образовывать следующие компоненты:

Двигатель внутреннего сгорания. В гибридных автомобилях также, как и в традиционных – бензиновых, используется ДВС, однако он значительно меньше и более усовершенствован в направлении сокращения уровня вредных выбросов в атмосферу и увеличения работоспособности.

Топливный бак. Топливный бак в гибридах является устройством хранения бензинового топлива для работы ДВС.

Электрический двигатель. Современные автомобилестроительные технологии позволяют использовать электродвигатель как в качестве силового двигателя, так и генератора энергии при торможении, тоесть электромотор способен ускорять автомобиль, питаясь от аккумуляторных батарей, или же может работать в генеративном режиме при спусках автомобиля по склону и торможении, обеспечивая восполнение энергии батарей.

Генератор. По механизму своей работы генератор схож с силовым электродвигателем, однако в ряде гибридном автомобиле он используется только для производства электрической энергии.

Аккумуляторные батареи – устройства хранения энергии для работы электродвигателя гибридного автомобиля. В то время, когда для бензинового двигателя свойственно только черпание бензина из топливного бака, электрический двигатель гибридного автомобиля может как использовать энергию батарей, так и восполнять её посредством механизма рекуперативного торможения.

В гибридных автомобилях, как правило, применяются более компактные и легкие аккумуляторные батареи, нежели в электромобилях.

Коробка переключения передач выполняет в гибридном автомобиле ту же функцию, что и бензиновом, с тем только различием, что контролирует работу как ДВС, так и электрического двигателей.

Для контроля потока энергии между генератором, батареей и электромотором используется блок управления энергией и полупроводниковое устройство переключения.

Ряд приемов позволяет увеличить эффективность использования бензинового топлива и энергии аккумуляторных батарей в гибридном автомобиле. Итак, в гибридном автомобиле с этой целью:

— Восполняется энергия, запасаемая в батареях, благодаря функции рекуперативного торможения электродвигателя.

— Приостанавливается работа ДВС. Гибридному автомобилю не нужно все время полагаться на бензиновый двигатель, поскольку в нем, как правило, есть полноценный тяговой электромотор.

— Используется развитая аэродинамика с целью уменьшения лобового сопротивления.

— Применяются легкие материалы. Снижение общего веса автомобиля является простым способом увеличения его пробега. Более легкий автомобиль потребляет значительно меньше энергии при ускорении и подъемах вверх по холмам. Композитные материалы, такие как углеродное волокно или же легкие металлы (алюминий, магний) могут использоваться для снижения веса общей конструкции гибридного транспорта.

— Используются специальные шины с пониженным сопротивлением качению.

Существует несколько эффективных методов обеспечения максимального пробега гибридного автомобиля:

— Поездки на небольших скоростях – аэродинамическое сопротивление резко возрастает при увеличении скорости.

— Поддержание стабильной скорости – при изменении скорости автомобиля, значительная часть энергии тратится впустую; поддержание скорости позволяет более эффективно использовать топливо.

— Предотвращение резких остановок – если транспортное средство будет останавливаться более длительный промежуток времени, электродвигатель сможет сгенерировать больше энергии.

Плюсы двигателя Стирлинга

Основной плюс такого типа силового агрегата — это то, что может работать на разных видах топлива. На практике было испытано следующее: во внешнюю камеру устройства подавался сначала бензин, потом дизель, потом метан, потом сырая нефть и растительное масло. Все это делалось без остановки двигателя и он продолжал успешно работать.

Также большим плюсом по сравнению с обычными двух тактными или четыерхтактрыми двигателями внутреннего сгорания является то, что двигателю Стирлинга не нужно дополнительное навесное оборудование, такое как газораспределительный механизм, коробка переключения передач, стартер.

Ресурс двигателя Стирлинга — больше 100 тысяч работы без остановки.

Немаловажный плюс — бесшумность работы. Такой двигатель не нуждается в удалении отработанного газа. В нем не может быть детонации двигателя, вибрация практически отсутствует.

Конструкция двигателя Бета

Преимущество для окружающей среды — это двигатель, который не загрязняет экологию, а значит это залог здоровья.

Плюсы и минусы атмосферных двигателей

С появление силовых агрегатов, оснащенных турбокомпрессором, многие водители стали отдавать предпочтение турбированным транспортным средствам. Однако, существует немало автомобилистов, которые при вопросе, какой двигатель лучше атмосферный или турбированный, выбирают привычный классический вариант, основываясь на следующих преимуществах:

«Атмосферник» отличают следующие достоинства:

  • хороший ресурс;
  • надёжность в эксплуатации;
  • долговечность;
  • простота использования;
  • относительная простота проведения профилактических и ремонтных работ;
  • неприхотливость в отношении качества топлива.

О надёжности атмосферного двигателя красноречиво свидетельствуют цифры. Качественные моторы позволяют автомобилю проходить до 500 тыс. километров. В истории развития автомобилестроения известны случаи, когда мотор переставляли из устаревшей машины в новую, и он продолжал исправно работать на протяжении ещё многих лет.

Атмосферные двигатели внутреннего сгорания отличаются наиболее длительным пробегом. Известны случаи, когда машины с установленными атмосферниками, работают без капитального ремонта на протяжении пути, более 500 тысяч километров. Единственное условие – своевременный уход и регулярная замена моторного масла с фильтрами. Их детали и узлы устойчивы против износа. Надежный атмосферный мотор обладает повышенным моторесурсом, продолжает работать даже после неоднократных замен кузова автомобиля.

Читать еще:  Что делать если в блоке двигателя сорвана резьба

Благодаря безотказной работе атмосферного мотора и простоте его эксплуатации, он неприхотлив к качеству топлива и смазочных материалов. При регулярном использовании бензина пониженного качества такие двигатели, если и выходят из строя, быстрее восстанавливают свою работоспособность. Основное требование к моторному маслу – это обеспечение необходимого уровня. Замена смазочной жидкости должна проводиться каждые 15 – 20 000 км. При выборе наиболее подходящей марки моторного масла для атмосферного двигателя рекомендуется отдавать предпочтение синтетике или полусинтетике.

Интересно: В отличие от турбонаддувного мотора, здесь можно заливать и минеральные масла, если не получилось приобрести более качественные смазочные материалы.

Конструкция «атмосферника» такова, что с его ремонтом или профилактикой может справиться не только профессионал, но и грамотный автолюбитель. Агрегат можно разобрать до последней детали и собрать обратно — конструкция позволяет сделать это без особых затрат. Нередки случаи, когда при ремонте агрегата используются «неродные» детали и комплектующие, произведённые другими производителями. Соответственно, и стоимость ремонта такого двигателя обходится дешевле.

Атмосферные двигатели внутреннего сгорания обладают некоторыми недостатками:

  • Сравнительно большой вес механизма.
  • Пониженная мощность и развиваемый крутящий момент в сравнении с мотором, оснащенным турбиной.
  • Атмосферники не рассчитаны на работу под большими нагрузками.
  • Сложности эксплуатации на большой высоте в условиях разреженного воздуха.
  • При работе атмосферного двигателя на малых оборотах не всегда всасывается достаточное количество воздуха, что отражается на стабильности работы.

Впрочем, на этом перечень «минусов» исчерпывается. Атмосферные ДВС надёжны, просты и долговечны, но при этом не созданы для больших нагрузок и высоких оборотов.

Достоинства и недостатки атмосферного двигателя

  • простая конструкция, если сравнивать с турбированным,
  • невысокая стоимость обслуживания и ремонта,
  • возможность самостоятельного ремонта,
  • относительная неприхотливость к качеству топлива,
  • ресурс двигателя от 250 000 км в силу низкой форсировки.

  • большой расход топлива,
  • ограничение по повышению мощности без потери эластичности мотора и его ресурса,
  • низкий КПД,
  • внедрение сложных узлов для «выравнивания» полки крутящего момента, что сказывается на дальнейшей стоимости в обслуживании и ремонте негативно.

masterok

Хочу все знать

Проблема перемещения в космосе стоит перед человечеством с момента начала орбитальных полетов. Ракета взлетая с земли расходует практически все свое топливо, плюс заряды ускорителей и ступеней. И если ракету еще можно оторвать от земли, заправив её огромным количеством топлива, на космодроме, то в открытом космосе заправляться попросту негде и нечем. А ведь после выхода на орбиту нужно двигаться дальше. А топлива нет.

И в этом то и состоит основная проблема современной космонавтики. Выбросить на орбиту корабль с запасом топлива до луны еще можно, под эту теорию строятся планы создать на луне базу дозаправки «дальнобойных» космических кораблей, летящих например на Марс. Но это все слишком сложно.

А решение проблемы было создано очень давно, еще в 1955 году, когда Алексей Иванович Морозов опубликовал статью «Об ускорении плазмы магнитным полем». В ней он описывал концепцию принципиально нового космического двигателя.

Устройство ионно плазменного двигателя

Принцип действия плазменного двигателя состоит в том, что рабочим телом выступает не сгорающее топливо, как в реактивных двигателях, а разогнанный магнитным полем до безумных скоростей поток ионов.

Источником ионов служит газ, как правило это аргон или водород, бак с газом стоит в самом начале двигателя, оттуда газ подается в отсек ионизации, получается холодная плазма, которая разогревается в следующем отсеке посредством ионного циклотронного резонансного нагрева. После нагрева, высокоэнергетическая плазма подается в магнитное сопло, где она формируется в поток посредством магнитного поля, разгоняется и выбрасывается в окружающую среду. Таки образом достигается тяга.

С тех пор плазменные двигатели прошли большой путь и разделились на несколько основных типов, это электротермические двигатели, электростатические двигатели, сильноточные или магнитодинамические двигатели и импульсные двигатели.

В свою очередь электростатические двигатели делятся на ионные и плазменные (ускорители частиц на квазинейтральной плазме).

В данной статье мы напишем про современные ионные двигатели и их перспективные разработки, так как на наш взгляд именно за ними будущее космического флота.

Ионный двигатель использует в качестве топлива ксенон или ртуть. Первый ионный двигатель назывался сетчатый электростатический ионный двигатель.

Принцип его действия таков:

В ионизатор подается ксенон, который сам по себе нейтрален, но при бомбардировании высокоэнергетическими электронами ионизируется. Таким образом в камере образуется смесь из положительных ионов и отрицательных электронов. Для «отфильтровывания» электронов в камеру выводится трубка с катодными сетками, которая притягивает к себе электроны.

Положительные же ионы притягиваются к системе извлечения, состоящей из 2 или 3 сеток. Между сетками поддерживается большая разница электростатических потенциалов (+1090 вольт на внутренней против – 225 на внешней). В результате попадания ионов между сетками, они разгоняются и выбрасываются в пространство, ускоряя корабль, согласно третьему закону Ньютона.

Российские ионные двигатели. На всех хорошо видны катодные трубки, направленные в сторону сопла

Электроны, пойманные в катодную трубку выбрасываются из двигателя под небольшим углом к соплу и потоку ионов. Это делается по двум причинам:

Во первых чтобы корпус корабля оставался нейтрально заряженным, а во вторых чтобы ионы «нейтрализованные» таким образом не притягивались обратно к кораблю.

Чтобы ионный двигатель работал нужны всего две вещи – газ и электричество. С первым все просто отлично, двигателю американского межпланетного аппарата Dawn, который стартовал осенью 2007-го, для полета в течении почти 6 лет потребуется всего 425 килограммов ксенона. Для сравнения для корректировки орбиты МКС с помощью обычных ракетных двигателей каждый год затрачивается 7,5 тонн горючего.

Одно плохо – ионные двигатели имеют очень небольшую тягу, порядка 50–100 миллиньютонов, что абсолютно недостаточно при перемещении в атмосфере Земли. Но в космосе, где нет практически никаких сопротивлений, ионный двигатель при длительном разгоне может достигнуть значительных скоростей. Общее приращение скорости за всё время миссии Dawn составит порядка 10 километров в секунду.

Тест ионного двигателя для корабля Deep Space

Читать еще:  Где находится датчик температуры двигателя джили мк

Недавние испытания проведенные американской компанией Ad Astra Rocket, проведенные в вакуумной камере показали, что их новый Магнитоплазменный двигатель с переменным удельным импульсом” (Variable Specific Impulse Magnetoplasma Rocket) VASIMR VX-200может дать тягу уже в 5 ньютонов.

Второй вопрос – электричество. Тот же VX-200 потребляет 201 кВт энергии. Солнечных батарей такому двигателю просто мало. Следовательно необходимо изобретать новые способы получения энергии в космосе. Тут есть два пути – заправляемые батареи например тритиевые, выводимые на орбиту вместе с кораблем, либо автономный атомный реактор, который и будет питать кораблю на протяжении всего полета.

Еще в 2006 году Европейское космическое агентство (European Space Agency) и Австралийский национальный университет (Australian National University) успешно провели испытания нового поколения космических ионных двигателей, достигнув рекордных показателей.

Двигатели, в которых заряженные частицы ускоряются в электрическом поле — давно известны. Они применяются для ориентации, коррекции орбиты на некоторых спутниках и межпланетных аппаратах, а в ряде космических проектов (как уже осуществившихся, так и только задуманных — читайте тут,тут и тут) — даже в качестве маршевых.

С ними специалисты связывают дальнейшее освоение Солнечной системы. И хотя все разновидности так называемых электроракетных двигателей сильно уступают химическим в максимальной тяге (граммы против килограммов и тонн), зато кардинально превосходят их в экономичности (расходе топлива на каждый грамм тяги за секунду). А эта экономичность (удельный импульс) прямо пропорционально зависит от скорости выбрасываемой реактивной струи.

Так вот, в опытном двигателе, названном «Двухступенчатый с четырьмя решётками» (Dual-Stage 4-Grid — DS4G), построенном по контракту ESA в Австралии, скорость эта достигла рекордных 210 километров в секунду.

Это, к примеру, раз в 60 выше, чем скорость выхлопа у хороших химических двигателей, и в 4-10 раз больше, чем у прежних «ионников».

Как ясно из названия разработки, такая скорость достигнута двухступенчатым процессом разгона ионов при помощи четырёх последовательных решёток (вместо традиционных одной стадии и трёх решёток), а также высоким напряжением — 30 киловольт. Кроме того, расхождение выходного реактивного пучка составило всего 3 градуса, против примерно 15 градусов — у прежних систем.

А вот информация последних дней.

Ионный двигатель (ИД) работает просто: газ из бака (ксенон, аргон и пр.) ионизируется и разгоняется электростатическим полем. Поскольку масса иона мала, а заряд он может получить значительный, ионы вылетают из двигателя со скоростями до 210 км/с. Химические двигатели могут достичь… нет, ни чего-то подобного, а всего лишь в двадцать раз меньшей скорости истечения продуктов сгорания лишь в исключительных случаях. Соответственно, расход газа в сравнении с расходом химического топлива крайне мал.

В 2014 году ионные двигатели справляют полувековой юбилей в космосе. Всё это время проблему эрозии не удавалось решить даже в первом приближении. (Здесь и ниже илл. NASA, Wikimedia Commons.)

Как и всё хорошее, ИД любит, чтобы его питали: на один ньютон тяги нужно до 25 кВт энергии. Представим, что нам поручили запустить 100-тонный космический корабль к Плутону (вы уж простите нас за мечтательность!). В идеале даже для Юпитера нам потребуется 1 000 ньютонов тяги и 10 месяцев, а до Нептуна на той же тяге — полтора года. В общем, давайте про Плутоны всё-таки не будем, а то грустно как-то…

Ну а чтобы получить эти пока умозрительные 1 000 ньютонов, нам потребуется 25 мегаватт. В принципе, ничего технически невозможного — 100-тонный корабль мог бы принять атомный реактор. Кстати, в настоящее время НАСА и Министерство энергетики США работают над проектом Fission Surface Power. Правда, речь идёт о базах на Луне и Марсе, а не о кораблях. Но масса реактора не так уж высока — всего пять тонн, при размерах в 3×3×7 м…

Ну ладно, помечтали и хватит, скажете вы, и тут же вспомните частушку, якобы придуманную Львом Толстым во время Крымской войны. В конце концов, такой большой поток ионов, проходящий через двигатель (а это ключевое препятствие), вызовет его эрозию, и значительно быстрее, чем за десять месяцев или полтора года. Причём это не проблема выбора конструкционного материала — благо разрушаться в таких условиях будут и титан, и алмаз, — а неотъемлемая часть конструкции ионного двигателя per se.

Так вот, исследователи из Лаборатории реактивного движения НАСА считают, что как минимум частично покончили с этой проблемой.

При большой тяге ионы в двигателе врезаются в анод, что ведёт к анодному разбрызгиванию. Чем выше тяга двигателя и скорость ионов, тем быстрее, следовательно, будет эродировать анод.

Стенки из нитрида бора — самое уязвимое место ионного двигателя, однако магнитное поле смогло повысить их предельный ресурс в 500–1 000 раз.

Они попробовали изолировать стенки анода (на базе нитрида бора) от положительных ионов магнитным полем. А линии такого магнитного поля были параллельны поверхности стенок, и по ним заряженные частицы уносились прочь, не трогая стенок. Решение, при всей его очевидности, оказалось довольно эффективным: скорость эрозии упала в 500–1 000 раз. Испытания проводились на ИД, основанном на эффекте Холла и потребляет значительное количество электроэнергии — около 25КВатт на создание силы тяги в 1 ньютон…

Разумеется, это не конец всех проблем. При дальнейшем масштабировании ИД энергия ионов может оказаться такой, что на защитное магнитное поле либо не хватит располагаемой электрической мощности, либо даже при её наличии обеспечить защиту от ионов полностью не получится. И всё же это решительный шаг вперёд — такое замедление эрозии делает принципиально возможной отправку даже весьма тяжёлого корабля к относительно удалённым объектам Солнечной системы.

Отчёт об исследовании опубликован в журнале Applied Physics Letters .

Подготовлено по материалам Gizmag. и http://lab-37.com

А вы в курсе что в России активно работает над ядерным двигателем для ракет или например о том, что скоро может появится Первый автомобиль с ядерным двигателем

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector