Все схемы ракетных двигателях и все принципы работы
Что такое ракетная печь: варианты конструкции, схемы и принцип работы
Этот необычный вид отопительных систем не знаком рядовым застройщикам. Многие профессиональные печники также никогда не сталкивались с подобными конструкциями. Это не удивительно, поскольку идея ракетной печи сравнительно недавно пришла к нам из Америки и сегодня энтузиасты пытаются донести ее до массового сознания граждан.
Благодаря простоте и дешевизне конструкции, тепловому комфорту и высокому КПД ракетные печи заслуживают написания отдельной статьи, которую мы и решили им посвятить.
Электроракетный двигатель, сущность, устройство, принцип работы:
Электрический ракетный двигатель (электроракетный двигатель, ЭРД) – ракетный двигатель , принцип работы которого основан на преобразовании электрической энергии в направленную кинетическую энергию частиц. В таких двигателях в качестве источника энергии для создания тяги используется электрическая энергия бортовой энергоустановки космического аппарата.
По физике процессов электрический ракетный двигатель отличается от других разновидностей ракетных двигателей – от жидкостных и твердотопливных. Последние два используют химическую энергию.
Как и в обычном химическом ракетном двигателе в ЭРД также присутствует рабочее тело, которым выступает, как правило, газ (аргон, ксенон, аммиак, азот, гидразин и т.п.), иногда – жидкость, смеси жидкости и газа, жидкие металлы, пары металлов и твердые вещества (например, фторопласт), а также их смеси. Рабочее тело также истекает из сопла двигателя и создает тягу. В отличие от химического ракетного двигателя скорость истечения потока рабочего тела в ЭРД имеет высокое значение и составляет от 3 км/с и более. При этом верхняя граница скорости истечения частиц газа или другого рабочего тела неограниченна и по предварительным оценкам составляет порядка 210 км/с. Электрическая мощность ЭРД колеблется от сотен ватт до мегаватт . В настоящее время для электрических ракетных двигателей различных типов характерны следующие скорости истечения рабочего тела – от 10 до 60 км/с, электрическая мощность – от 0,8 до 7 КВт. КПД таких двигателей составляет порядка от 30 до 60%. Сам газ – рабочее тело (если в качестве рабочего тела используется газ) хранится в жидком виде.
В отличии от химическим двигателей электрические ракетные двигатели имеют исключительно высокий удельный импульс, составляющий до 100 км/с и более. Однако большой потребный расход энергии (1-100 кВт/Н тяги) и малое отношение тяги к площади поперечного сечения реактивной струи (не более 100 кН/м2) ограничивают максимальную целесообразную тягу ЭРД несколькими десятками ньютон . Недостатком электрических ракетных двигателей также является малое ускорение космического аппарата, которое составляет десятые или даже сотые доли ускорения свободного падения (g), что ограничивает применение таких двигателей только космическим пространством. Поэтому для запуска космического аппарата с Земли к другим планетам необходимо комбинировать обычные химические ракетные двигатели с электрическими.
Для ЭРД характерны малые размеры – порядка 0,1 м и более, а также масса порядка нескольких кг .
[править] Сравнение с химическими ракетами
Различие между электрическими и химическими двигатели показано на рисунке № 2. Электрические двигатели имеют малую тягу по сравнению с химическими ракетами. Однако химические двигатели расходуют огромное количество топлива и поэтому работают только короткое время. Электрические же ракетные двигатели могут работать очень долго и за большое время способны разогнать космический аппарат до приличных скоростей. Поэтому электрические ракетные двигатели лучше всего подходят на медленные путешествия на большие расстояния, а химические ракетные двигатели — на быстрые перелеты на короткие расстояния.
Говоря другими словами электрические ракетные двигатели имеют более высокую Δv — приращение скорости за то же количество топлива. Поэтому хотя химические ракеты и имеют большую тягу, но это преимущество достигается за счет огромного расхода топлива. Причина связана с тем, что скорость истечения топлива у электрических ракетных двигателей намного выше по сравнению с химическими ракетами. А скорость истечения топлива в свою очередь определяет его удельную эффективность — получаемую энергию на единицу массы.
В общем химический ракетный двигатель можно сравнить со спринтером, пробегающим 100 метров со скоростью 10 м/с, а электрический ракетный двигатель — с марафонцем, пробегающим 40 километров со скоростью скажем 1 м/с. Правда тут есть один нюанс. В космосе нет силы трения и гравитации, поэтому любое движение является равноускоренным. Если человек первую секунду бежал со скоростью 1 м/с, то во вторую секунду его скорость уже составит 2 м/с. при тех же усилиях бегуна.
Стоит отметить, что электрический ракетный двигатель можно применять только в космосе, так как его одномоментная сила тяги намного слабее гравитации Земли. Для стартов пока нет альтернативы химическому ракетному двигателю с его способностью развить мощную тягу за считанные секунды.
Радиотехнические устройства управления ракеты Фау-2
Первоначально для определения скорости ракеты предполагали использовать радиотехническое устройстсво, основанное на эффекте Доплера. Но от него отказались из-за слабой помехоустойчивости.
Опыты с управляемыми по радио ракетами велись в Германии с 1933 года. К 1939 году были разработаны радиотелеметрические средства для дистанционного управления, а в 1941 году – впервые применены на ракете Фау-2.
Радиоуправление было необходимо для измерения скорости ракеты, для передачи команд выключения ракетного двигателя, для определения места падения ракеты и для управления полётом ракеты по курсу. Для каждой функции радиоуправления предназначалась отдельная радиолиния (радиотропа), причём все они разрабатывались отдельными частями. Поэтому аппаратура была громоздкой и дорогой.
С 1944 года на ракетах Фау-2 стали применять аппаратуру, разработанную комплексным методом: путём объединения радиотроп, ранее предназначенных для раздельных функций. Были созданы новые комплексные системы: «Гавайя 2», «Циркель», «Эватор». В первых модификациях радиоуправления ракеты Фау-2 применялась аппаратура, работающая на волнах ультракоротковолнового диапазона. Такая аппаратура была очень подвержена помехам, тем более, что долгое время не предпринимались специальные меры по повышению помехоустойчивости. В то время немецкие специалисты предполагали, что при ведении групповой стрельбы ракетами, радиоуправление которых работает на различных длинах волн, создать помехи и перехватить ракеты очень мало вероятно.
В первых системах радиотелеметрического управления использовался метод равносигнальной зоны. Те есть ракета должна двигаться по строго определённому пути, задаваемому радиоустройством. В случае отклонения от этого пути приёмное устройство на ракете принимает соответствующий сигнал, перерабатывает его в приёмнике и в смесительном устройстве «Мишгерет», откуда поступает к рулевым машинкам, которые с помощью газовых рулей возвращают ракету в нужное положениена заданной траектории полёта.
Равносигнальная зона задаётся работой радионавигационной линии «Гавайя 1 В – Виктория». Наземный передатчик «Гавайя 1В» работал на УКВ в диапазоне 5,8 — 6,8 м. Диаграмма излучения направлялась с некоторым смещением от «оси» траектории полёта (0,7 градуса) в обе стороны попеременно (50 раз в секунду). Передающее устройство «Гавайя 1В» питало две антенны, отстоящие на расстоянии 35 длин волн (300 м) одна от другой.
Ось равносигнальной зоны не должна была быть сдвинута больше, чем на 0,005 градуса. Источник переменного тока N= 15 кВт питал передатчик «Хазе», который давал равносигнальную зону. Затем энергия высокой частоты проводилась через устройство «Кабине», где измерялась мощность и коэффициент бегучести, к фазовому манипуляционному устройству «Пфад» и к антенне. На борту ракеты для приёма равносигнальной зоны имелся приёмник «Виктория» и преобразователи «Мишгерет» («Das Mischgerät» — нем. — электронное аналоговое вычислительное устройство) и др.
Для выключения двигателя ракеты и для измерения скорости на земле размещались передатчик «Неаполь» и приёмное устройство «Салерис». На борту ракеты, соответственно, помещались передатчики «Палермо» или «Хазе», модулятор «Хейде», служащий для выработки команды отсечки горючего, прибор маскировки «Хазум» и приёмопередатчик «Ортлер» («Das Ortler-Gerät» — нем. — специальный приемопередатчик для дублирования частот радиоуправления ракетой) — для измерения скорости.
Антенна передатчика «Хазе» давала узкую диаграмму направленности в горизонтальной плоскости и широкий раствор – в вертикальной. Это позволяло противнику обнаружить работу «Хазе» и создать помехи. Поэтому немецкие специалисты спроектировали и создали установку «Гавайя -2», у которой вместо создания равносигнальной зоны в плоскости по направлению полёта ракеты создавался ведущий луч, тоже представляющий собой равносигнальную зону. Обнаружить такой луч было очень трудно. В системе «Гавайя-2» равносигнальная зона создавалась более короткими волнами, сначала 50 см, а затем 20 см. Для получения узкого ведущего луча в параболическом зеркале антенного устройства измеряющий диполь помещался вне оси рефлектора. При вращении диполя вокруг оси рефлектора формировалась конусообразная диаграмма излучения с равносигнальной зоной, совпадающей с оптической осью рефлектора.
Считалось достаточной точностью попадание ракеты с радиотеле-механическим управлением при дальности 250 км равным ± 300 м по азимуту. Но обычно такая точность попаданий ракетой Фау-2 не достигалась.
Принцип работы
На удивление экспериментальная установка устроена очень просто. При помощи компрессора воздух под давлением идет в кварцевую трубку. К ней присоединен волновод, у которого на одном конце установлен магнетрон мощностью в 1 кВт. Именно это то устройство, которое отвечает за разогрев еды в микроволновке. Оно генерирует излучение в 2,45 ГГц, благодаря которому происходит ионизация и нагрев подаваемого воздуха. В итоге мы получаем плазму, в будущем отводящуюся в «реактивное сопло». Данный аппарат выглядит как кварцевая трубка в диаметре 24 см.
Таким образом, один конец у нас с, так называемой, микроволновкой. Отметим, что аппарат охлаждается простой водой. Если этого не делать, то есть риск возникновения выскоплазменного электромангала.
В результате эксперимента тяга, которую создали китайские ученые, заставляет подпрыгивать стальной шар, который весит 1 кг. Его крепят на конце импровизированного сопла. Проанализировав полученные данные, можно сказать, что подъемная сила в 28 Н/кВт, а также давление в 24 кН/кв.м. дает вполне реальную жизнь идее, когда воздушно плазменный реактивный двигатель становится интересным аналогом обычного реактивного двигателя, который работает на ископаемом топливе.
Ошеломляющий результат разработки – сразу три весомых для планеты пункта:
- Больше не надо жечь нефтепродукты.
- Заметно сократиться загрязнение атмосферы углеродом.
- Замедлится процесс глобального потепления.
Ученые предполагают, что в будущем такими двигателями можно оснастить самые разные устройства, в том числе и самолеты. Но внедрить изобретение можно только тогда, когда будут разработаны компактные и мощные источники энергии. Ими вполне могут стать портативные термоядерные реакторы.
Для всех плазменных ракет свойственно работать по одному принципу. Речь идет о ситуации, когда предельно близко работают электрические и магнитные поля. На первом этапе происходит преобразование газа, как правило, ксенона или криптона, в плазму. Дальше происходит ускорение ионов в плазме из двигателя при скорости больше 72 тыс. км/ч. При этом создается тяга в необходимом направлении. На данный момент есть ни один способ, который дает возможность применить данную формулу для формирования рабочей плазменной ракеты. Три из них считаются максимально удачными и перспективными.
Двигатель Холла
Отличается этот вариант тем, что здесь нет ограничений, которые налагаются объемным зарядом. Благодаря этому обеспечивается большая плотность тяги. Как результат, этот тип двигателя способствует увеличению скорости ракет в несколько раз в сравнении, к примеру, с ионными агрегатами в том же размере.
Идея принадлежит американскому физику, Эдвину Холлу. Ученый показал миру, как в проводнике с взаимно перпендикулярным электрическим и магнитным полем образуется электроток. Основная фишка в направлении – оно для обоих перпендикулярно. Иными словами, в данном устройстве образование плазмы происходит при помощи заряда между анодом и катодом. Это совершенно простое действие отделяет электроны от нейтральных атомов.
В наше время в пределах околоземных орбит находится около 200 спутников, работающих на данном устройстве.
Эта грозная аббревиатура расшифровывается как абляционный импульсный плазменный двигатель. Основная зона его предназначения – малые космические аппараты, оснащенные неплохим спектром функциональных возможностей. Расширение устройства обеспечивает высокоэффективный малогабаритный агрегат, который сможет корректировать и поддерживать орбиту.
Стоит отметить, что данное устройство весьма перспективно и имеет весомые плюсы:
- всегда готов к работе;
- большой ресурс;
- низкая инерционность;
- может точно дозировать импульс;
- тяга обуславливается потребляемой мощностью.
Стационарные двигатели
В первую очередь, при рассмотрении этого устройства, важно отметить малую врабатываемость мощности и компактность. Область применения его в космической технике – исполнительный орган электрореактивной установки.
Также он является незаменимым помощников во время научных исследований. Стационарный двигатель дает возможность моделировать с высокой точностью направленные плазменные потоки. Иначе говоря, его можно назвать магнетроном, который часто используют в промышленном направлении.
Рецепт смеси
Твердое топливо по своему составу очень разнообразно, и делится на несколько типов. Львиную долю занимают смесевые топлива — тонко измельченные и перемешанные неорганические компоненты, соединенные связующими веществами. Одни из них являются окислителями, другие горючими, они реагируют во фронте горения топлива.
Помимо горючего и окислителя в топливо добавляют многие вспомогательные вещества. Чтобы топливо было пластичным, хорошо размешивалось и могло подаваться при снаряжении в корпус двигателя шнековыми машинами, в топливо вводят пластификаторы. Чтобы придать ему твердость, в топливо добавляют эпоксидные отвердители. При длительном вертикальном положении массив топлива не должен оплывать, давать трещины и накапливать внутренние напряжения — ракеты иногда стоят на боевом дежурстве десятки лет.
Если в топливе появятся трещины, то при работе двигателя они станут нерасчетными площадями горения, оплывший свод потеряет расчетную толщину и изменит форму канала, а возникшие в массиве топлива напряжения приведут к дополнительному разгару в этих местах. Эти риски возрастают под действием взлетной перегрузки, в разы усиливающей вес и давление массы топлива.
Физические свойства топлива регулируются связующими добавками специальных стабилизаторов. Также в топливо добавляют ингибиторы и катализаторы горения, флегматизаторы (они уменьшают чувствительность топлива к трению, что необходимо при изготовлении смеси и снаряжения двигателя), ингибиторы окисления и другие добавки.
Состав топлива ускорителя SLS таков:
- 69,6 процентов окислителя, перхлората аммонияNH4ClO4,
- 16 процентов металлического алюминия,
- 12 процентов полибутадиенакрилонитрила,
- 1,96 процента эпоксидного отвердителя,
- 0,4 процента железа, которое используется в качестве катализатора.
В молекуле перхлората аммония — четыре атома кислорода. Они освобождаются при нагревании и окисляют металлический алюминий и полибутадиенакрилонитрил. Полибутадиенакрилонитрил, или бутадиен-нитрильный каучук (БНК) — это жесткая резина, которая работает и горючим, и связующим. Углерод и водород БНК при сгорании образуют газовое рабочее тело — смесь в основном углекислого газа и водяного пара. Второе горючее, мелкодисперсный алюминий, сгорает без выделения газов, но температура горения алюминия очень высока, около 3300 °С. Это повышает температуру газов, передавая им тепло сгорания металла.
Ракетные комплексы и установки
В таблице приведены характеристики ракетных комплексов, стоящих на вооружении в различных странах
Название | P-36M (СС-18 Сатана) | Р-29РМУ2 Синева | UGM-133A Трайдент II (D5) | DongFeng 31 (DF-31A) | РТ-2ПМ2 «Тополь-М» | РСМ-56 Булава |
---|---|---|---|---|---|---|
Страна | Россия/СССР | Россия | США | Китай | Россия | Россия |
Принята на вооружение, год | 1978 | 2007 | 1987 | 2006 | 2000 | 2013 |
Базирование | шахтное | морское | морское | морское | шахтное/мобильное | морское |
Дальность полета, км | 16000 | 11547 | 11300 | 11200 | 11000 | 10000 |
Точность, м | 300 | 500 | 120 | 300 | 200 | 350 |
Как видно из таблицы точность МБР последнего поколения возросла, кроме того свои баллистические ракеты появились у Франции и Китая. Данный факт свидетельствует о том, что на мировой политической и военной арене появились новые игроки, способные повлиять на стратегический ядерный баланс.
Подводя итог можно отметить, что межконтинентальные баллистические ракеты являются основным средством ядерного сдерживания.
Наличие их на вооружении ведущих стран мира позволяет сохранить паритет в возможном глобальном конфликте (в третьей мировой войне не будет ни победителей ни проигравших) и остудить горячие головы политиков.