Асинхронный двигатель устройство и принцип работы реферат - АвтоКлуб Toyota
Toyota-navi.ru

АвтоКлуб Toyota
4 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Асинхронный двигатель устройство и принцип работы реферат

Асинхронный двигатель – это асинхронная электрическая машина, применяемая для преобразования электрической энергии в механическую. Асинхронный дословно означает неодновременный – здесь имеется в виду, что у асинхронного двигателя магнитное поле всегда имеет большую частоту вращения, чем ротор, который словно пытается его догнать. Работают эти машины от сетей с переменным током.

Любой асинхронный двигатель состоит из двух ключевых составляющих: ротора и статора. Эти части не контактируют между собой и отделены друг от друга воздушным зазором, в котором формируется подвижное магнитное поле.

Статор асинхронной машины состоит из следующих частей:

  1. Корпус. Служит для скрепления всех деталей мотора. Для двигателей небольшого размера, как правило, используют цельные литые корпусы из чугуна, стальных и алюминиевых сплавов.
  2. Сердечник или магнитопроводник. Собирается из пластин, для изготовления которых применяют специальную электрическую сталь. Запрессовывается в корпус и улучшает магнитно-индукционные качества машины. Каждая пластина сердечника покрывается особым лаком, позволяющим уменьшить потери при возникновении вихревых токов. В некоторых случаях устройство асинхронного двигателя предусматривает установку корпуса-сердечника, совмещающего в себе обе функции.
  3. Обмотки. Устанавливаются в пазы сердечника. Представляет собой три катушки из меднопроволочных секций, расположенные под углом в 120˚ относительно друг друга. Называется первичной, потому что подключается к сети напрямую.

Конструкция ротора состоит из основного блока с вентиляционной крыльчаткой, опирающегося на подшипники. Связь ротора с приводимым в движение механизмом обеспечивается с помощью прямого подключения, редукторов или других способов передачи механической энергии. В асинхронных двигателях используются два вида роторов:

  1. Массивный ротор – единая схема из прочного ферромагнитного соединения. Внутри неё индуцируются токи, и она же выполняет в конструкции роль магнитопровода.
  2. Короткозамкнутый ротор (изобретён великим русским инженером Михаилом Осиповичем Доливо-Добровольским, как и весь трёхфазный ток) – система соединенных с помощью колец проводников, похожая по внешнему виду на беличье колесо. Внутри него индуцируются токи, чье электромагнитное поле вступает во взаимодействие с магнитным полем статора, в результате чего ротор приводится в движение.

Рекомендуем посмотреть это видео. Оно хоть и старое, но интересное и познавательное. Позволит закрыть непонятные моменты.

Асинхронный двигатель

РубрикаФизика и энергетика
Видреферат
Языкрусский
Дата добавления23.12.2015
Размер файла808,2 K
  • посмотреть текст работы
  • скачать работу можно здесь
  • полная информация о работе
  • весь список подобных работ

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«Омский государственный аграрный университет имени П.А. Столыпина»

Кафедра технического сервиса, механики и электротехники факультета технического сервиса в АПК

на тему: Асинхронный двигатель

Выполнили: ст. 41 гр., Голышев К., Гаврюшин К.

Проверил: ст. преп., доцент, кандидат технических наук, Троценко В.В.

1. Асинхронный двигатель. Общие сведения

2. Устройство асинхронного двигателя

3. Принцип действия

1. Асинхронный двигатель. Общие сведения

Асинхронные машины относятся к классу электромеханических преобразователей, т.е. преобразователей электрической энергии в механическую или механической в электрическую. В первом случае они называются двигателями, а во втором — генераторами. Все электрические машины обладают свойством обратимости и могут осуществлять преобразование энергии в обоих направлениях, поэтому при изучении процессов в машинах пользуются понятиями двигательного и генераторного режимов. Однако при разработке и изготовлении машины оптимизируются для условий работы в одном из режимов и используются в соответствии с назначением. Асинхронные машины не являются исключением из этого правила, но асинхронные генераторы значительно уступают синхронным по многим параметрам и редко используются на практике, в то время как асинхронные двигатели являются самыми распространёнными электромеханическими преобразователями. Суммарная мощность асинхронных двигателей составляет более 90% общей мощности всех существующих двигателей, поэтому в данном курсе мы ограничимся рассмотрением только этого типа машин. Асинхронные двигатели относятся к бесколлекторным машинам переменного тока или машинам с вращающимся магнитным полем. Название асинхронные (несинхронные) объясняется тем, что в статическом режиме работы скорость вращения ротора (вращающейся части) двигателя отличается от скорости вращения магнитного поля, т.е. ротор и поле вращаются несинхронно.

2. Устройство асинхронного двигателя

Устройство асинхронного двигателя показано на рис.

Основные его части статор и ротор. Статор — это неподвижная часть мотора (1), в котором закреплены между собой все части электродвигателя и с помощью которого двигатель крепится на основании.

Подшипники качения (2) размещаются в подшипниковых щитах (3), которые обеспечивают соосность между статором и ротором. В корпусе (1) размещён магнитный сердечник (7), собранный из статорных пластин толщиной 0,3 — 0,5 мм. Эти пластины изолированы друг от друга. В желобах статора расположена трёхфазная обмотка (8), с помощью которой получаем вращающееся магнитное поле. Ротор (9), закреплённый на валу (10), вращается на подшипниках. На свободном конце вала находится вентилятор (4), который при вращении мотора подаёт воздух для охлаждения. Вентилятор закрыт крышкой для защиты от касания. Для электрического подсоединения мотора на корпусе находится клеммная коробка (6).

3. Принцип действия

Рассмотрение принципа действия асинхронного двигателя можно разделить на два этапа: первый этап — создание обмоткой статора вращающегося магнитного поля, второй этап — взаимодействие вращающегося магнитного по- ля с обмоткой ротора. Магнитное поле асинхронного двигателя Симметричная трехфазная обмотка статора подключена к трехфазному источнику. При этом фазные токи симметричны, т.е. одинаковы по величине и отличаются по фазе на 1/3 часть периода. Временная диаграмма фазных токов показана на рис. 1. Обмотка статора с симметричным трехфазным током создает магнитное поле, распределенное в магнитной цепи асинхронного двигателя. Для анализа характера магнитного поля рассмотрим распределение его силовых линий в разные моменты времени, обозначенные на рис. t1, t2, t3, t4 через равные промежутки ?t=T/3.

Читать еще:  Что нужно для того чтобы установить дизельный двигатель

асинхронный двигатель статор ротор

Рис. 1- Временная диаграмма фазных токов обмотки статора

Распределение силовых линий магнитного поля определяется направлением токов в проводниках обмотки статора, расположенных в его пазах. Каждая фаза трехфазной обмотки представлена одним витком, стороны которого находятся в диаметрально расположенных пазах. Три фазы смещены относительно друг друга по окружности на 120°. Проводники, соответствующие началам фаз, обозначены символами А, В, С, концы фаз — X, Y, Z. На рис.2 показаны силовые линии магнитного поля для трех моментов времени.

Рис. 2- Силовые линии магнитного поля асинхронного двигателя в разные моменты времени

Направления токов в проводниках определяются их значениями в соответствии с временной диаграммой на рис. 1. В частности, в момент времени t1 ток фазы А положителен (iA>0). На рис. 2 положительному значению тока соответствует направление за плоскость рисунка, которое обозначено в начале фазы А знаком «+». В конце этой фазы X ток отрицателен, т.е. имеет обратное направление, которое обозначено знаком «*». Аналогично обозначены токи двух других фаз, которые в соответствии с временной диаграммой в этот момент времени имеют отрицательные значения (iB0, iC0. Как видно на рис. 2, при питании обмотки статора трехфазным током создается двухполюсное магнитное поле. С изменением фазных токов это магнитное поле поворачивается в пространстве. При этом через равные промежутки времени (?t=T/3) магнитное поле поворачивается в пространстве на равный угол (1/3 часть окружности). В момент времени t4 распределение токов в обмотке и магнитное поле повторяет момент t1, Таким образом, симметричная трехфазная обмотка статора асинхронного двигателя, потребляющая от трехфазного источника симметричные фазные токи, создает равномерно вращающееся в пространстве магнитное поле.

Взаимодействие вращающегося магнитного поля с обмоткой ротора Электромагнитный вращающий момент асинхронного двигателя создается при взаимодействии вращающегося магнитного поля с обмоткой ротора. Рис. 2 иллюстрирует процессы, происходящие при этом взаимодействии.

Рис. 3. Взаимодействие вращающегося магнитного поля с обмоткой ротора

Здесь показаны стержни короткозамкнутой обмотки ротора. Вращающееся магнитное поле, связанное с ротором, представлено его силовыми линиями с индукцией В, направленными сверху вниз. Направление вращения магнитного поля — по часовой стрелке с частотой вращения n0. При вращении магнитного поля его силовые линии пересекают проводники обмотки ротора. При этом проявляется индукционное действие магнитного поля. Согласно закона электромагнитной индукции в проводнике, движущемся в магнитном поле (относительно магнитного поля), индуцируется ЭДС e Величина этой ЭДС определяется интенсивностью магнитного поля (индукцией В) и скоростью движения проводника относительно магнитного поля v: e2 = Bvl 2 , (где l — длина проводников обмотки ротора). Направление ЭДС e2 в проводнике определяется по правилу правой руки. При этом необходимо иметь в виду, что вектор скорости определяется направлением движения проводника относительно магнитного поля. Например, на рис. 2 магнитное поле вращается по часовой стрелке. При этом относительно верхних проводников силовые линии движутся вправо. Это эквивалентно направлению движения проводника относительно магнитного поля влево, т.е. вектор скорости относительного движения проводника следует направить влево. С учетом этого направление ЭДС индукции в верхних проводниках обмотки ротора — из-за плоскости рисунка, а в нижних проводниках — за плоскость рисунка. Эти направления обозначены условными знаками «+» и «*». В короткозамкнутой обмотке ротора все стержни включены в замкнутую электрическую цепь посредством короткозамыкающих колец. В каждом стержне под действием ЭДС е2 возникает ток ротора (вторичный ток) i2 того же направления, что и ЭДС. Величина этого тока определяется величиной ЭДС е2 и полным сопротивлением обмотки ротора Z2.i2= e2/Z2. При возникновении тока в обмотке ротора проявляется силовое действие магнитного поля, т.е. на проводники с током, находящиеся в магнитном поле, действует электромагнитная сила Fэм. Величина этой силы определяется интенсивностью магнитного поля (индукцией В) и величиной тока i2: Fэм= Bi(2)/ l. Направление действия электромагнитной силы определяется в соответствии с правилом левой руки. При направлениях силовых линий и токов в обмотке ротора, показанных на рис. 3, направление электромагнитной силы, действующей на верхние проводники, — вправо, а на нижние — влево. Силы, действующие на все проводники обмотки ротора, складываясь, создают электромагнитный вращающий момент Мэм , направленный по часовой стрелке.

где D2 — диаметр ротора; N2 — число проводников обмотки ротора.

Под действием этого вращающего момента ротор вращается с частотой вращения n в том же направлении, что и магнитное поле. При этом двигатель, вращая приводной механизм, совершает механическую работу. Для осуществления реверса (изменения направления вращения) необходимо поменять на- правление вращения магнитного поля. Для этого достаточно переключить об- мотку статора так, чтобы изменить последовательность чередования фаз на противоположную.

Читать еще:  Формула расчета расхода топлива от мощности двигателя

Таким образом, асинхронный двигатель, обмотка статора которого подключена к трехфазному источнику электроэнергии, создает электромагнитный вращающий момент и совершает механическую работу. Т.е. асинхронный двигатель преобразует электрическую энергию в механическую.

Необходимым условием создания электромагнитного момента является неравенство частоты вращения ротора n и магнитного поля n0. Если ротор вращается с такой же частотой вращения, как и магнитное поле (n=n0), то проводники обмотки ротора относительно магнитного поля неподвижны, т.е. скорость относительного движения v=0. Тогда ЭДС е2 в обмотке ротора равна нулю, и тока в обмотке нет (i2=0), электро- магнитная сила не создается (Fэм=0) и электромагнитный вращающий момент равен нулю. Т.е. механическая энергия не создается. Такой режим работы асинхронного двигателя называется холостой ход. Частота вращения ротора, равная частоте вращения магнитного поля, называется синхронной.

Достоинства асинхронного двигателя:

1. Простота изготовления.

2. Относительная дешевизна.

3. Высокая надёжность в эксплуатации.

4. Невысокие эксплуатационные затраты.

5. Возможность включения в сеть без каких-либо преобразователей (для нагрузок, не нуждающихся в регулировке скорости).

Все вышеперечисленные достоинства являются следствием отсутствия механических коммутаторов в цепи ротора и привели к тому, что большинство электродвигателей, используемых в промышленности — это асинхронные машины, в исполнении АДКЗ.

Недостатки асинхронного двигателя:

1. Небольшой пусковой момент.

2. Значительный пусковой ток.

3. Низкий коэффициент мощности.

4. Сложность регулирования скорости с необходимой точностью.

Причиной широкого распространения асинхронных двигателей является их предельная простота, надёжность и экономичность. Можно сказать, что асинхронные двигатели совместно с синхронными генераторами и трёхфазными линиями передачи и распределения электрической энергии образуют систему передачи механической энергии на расстояние. В последнее время в связи с появлением полупроводниковых преобразователей частоты для питания асинхронных двигателей область их применения существенно расширилась. Они стали широко применяться в высокоточных приборных приводах там, где ранее использовались в основном двигатели постоянного тока.

1. Учебное пособие: Электротехника Асинхронный двигатель, Проскуряков В.С., Соболев С.В.

2. Учебное пособие: Общая электротехника, Усольцев А.А.

Размещено на Allbest.ru

Подобные документы

Образование вращающегося магнитного поля. Подключение обмотки статора к цепи переменного трехфазного тока. Принцип действия асинхронного двигателя. Приведение параметров вторичной обмотки к первичной. Индукция магнитного поля. Частота вращения ротора.

презентация [455,0 K], добавлен 21.10.2013

Определение трехфазного асинхронного двигателя и обмоточных данных, на которые выполнены схемы обмоток. Перерасчет обмоток на другие данные (фазное напряжение и частоту вращения магнитного поля статора). Установление номинальных данных электродвигателя.

курсовая работа [1006,7 K], добавлен 18.11.2014

Функционирование асинхронных машин в режиме генератора. Устройство асинхронных двигателей и их основные характеристики. Получение вращающегося магнитного потока. Создание вращающего момента. Частота вращения магнитного потока статора и скольжения.

реферат [206,2 K], добавлен 27.07.2013

Получение вращающего магнитного поля, работа статора. Пуск в ход однофазного асинхронного двигателя, его механическая характеристика и применение. Способ подключения трёхфазного двигателя в однофазную сеть, подбор и определение ёмкости конденсатора.

реферат [35,7 K], добавлен 20.05.2011

Расчет параметров обмотки статора и ротора асинхронного двигателя с короткозамкнутым ротором. Расчет механической характеристики асинхронного двигателя в двигательном режиме по приближенной формуле М. Клосса и в режиме динамического торможения.

курсовая работа [827,2 K], добавлен 23.11.2010

Типы однофазных моторов

Различают бифилярный и конденсаторный механизм.

  1. Бифилярный пуск

Бифилярная обмотка не используется при постоянном режиме. Иначе значение КПД снижается. Набирая обороты, она обрывается. Обмотка пуска включается на несколько секунд. Расчет работы по 3 секунды до 30 раз в 60 минут. Превышение запусков могут привести к перегреву витков.

  1. Конденсаторный пуск

Фаза расщепленная, цепь вспомогательной обмотки включается во время запуска. Для достижения пускового момента необходимо создать круговое магнитное поле. Использование конденсатора обеспечивает лучший пусковой момент. Двигатели с включенными конденсаторами в цепи являются конденсаторными. Работают на основе вращения поля магнитов. У конденсаторного устройства две катушки, которые всегда под напряжением.

Ротор

Ротор состоит из нескольких тонких стальных пластин с равномерно расположенными по периферии стержнями из алюминия или меди. В наиболее популярном его типе – короткозамкнутом, или «беличьей клетке», – стержни на концах механически и электрически соединены с помощью колец. Почти в 90% АД используется такая конструкция, так как она проста и надежна. Ротор состоит из цилиндрического пластинчатого сердечника с аксиально размещенными параллельными пазами для установки проводников. В каждый паз укладывается стержень из меди, алюминия или сплава. Они замкнуты накоротко с обеих сторон с помощью концевых колец. Такая конструкция напоминает беличью клетку, из-за чего и получила соответствующее название.

Пазы ротора не совсем параллельны валу. Их делают с небольшим перекосом по двум основным причинам. Первая заключается в обеспечении плавной работы АД за счет уменьшения магнитного шума и гармоник. Вторая заключается в снижении вероятности застопоривания ротора: его зубцы зацепляются за прорези статора за счет прямого магнитного притяжения между ними. Это происходит, когда их число совпадает. Ротор устанавливается на валу с помощью подшипников на каждом конце. Одна часть обычно выступает больше, чем другая, для приведения в движение нагрузки. В некоторых двигателях на нерабочем конце вала крепятся датчики скорости или положения.

Между статором и ротором имеется воздушный зазор. Через него передается энергия. Сгенерированный крутящий момент заставляет ротор и нагрузку вращаться. Вне зависимости от типа используемого ротора, устройство и принцип действия асинхронного двигателя остаются неизменными. Как правило, АД классифицируются по числу обмоток статора. Различают однофазные и трехфазные электрические моторы.

Читать еще:  Чем промыть систему охлаждения двигателя ваз 2109 инжектор

Недостатки асинхронных двигателей

Есть у электродвигателей такой конструкции и свои недостатки. К ним можно отнести потери на тепло. Они, действительно, могут перегреваться, особенно – под нагрузкой. Для этого их корпуса нередко делают ребристыми – чтобы они лучше излучали тепло в окружающее пространство. Также асинхронный прибор часто снабжается сидящим на том же валу вентилятором для обдува ротора, потому что корпус может отводить тепло только от статора, так как воздушного зазора между ними нет, чего не скажешь о роторе.

Невозможность стабильно держать частоту вращения делает асинхронный двигатель неприменимым в некоторых устройствах.

Основные части двигателя: статор и ротор. Три обмотки находятся на полюсах железного сердечника кольцевой формы, сети так называемого трехфазного тока 0 располагаются одна относительно другой строго под углом 120 градусов.
Также отметим, что внутри самого сердечника закреплен на той же оси цилиндр из высококачественного металла. Он называется – ротор.

Статор

Статор это неподвижная часть, которая формирует вращающееся магнитное поле. Именно это поле непосредственно соприкасается с электромагнитным полем самой подвижной части, именуемой ротором, тем самым происходит полноценное вращение ротора.

Двигатели статора имеют фазные и короткозамкнутые роторы.

Устройство статора

  1. Первое это корпус, изготовленный из чугуна, но часто встречаются корпуса из алюминия.
  2. Далее идет сердечник из пластин, которые изготовлены из электротехнической стали в толщину 0,5 миллиметров. Пластины сердечника скреплены скобками или же швами, покрыты изоляционным лаком, закреплены в станине при помощи стопорных болтов.
  3. Ну и последнее в устройстве статора– обмотки, сдвинутые друг к другу на 120 градусов, как правило, в устройстве их не более трех, они вложены в пазы на внутренней стороне самого сердечника, изготовлены из изолированного медного, алюминиевого провода круглого/квадратного сечения.

Сердечник статора

Выполняется с посадкой на вал, без наличия промежуточной втулки. Посадка сердечников используется в двигателях с высотой непосредственно оси в 250 миллиметров без шпонки.
В больших двигателях сердечники закреплены на вал с применением шпонки. В случае, если ротор в диаметре 990 миллиметров, сердечник шихтуют из разных сегментов.

Обмотка статора и количество оборотов электродвигателя

Определить количество оборотов электродвигателя можно лишь при помощи обмотки. В этом нет ничего сложного и достаточно просто следовать инструкции и все получится. Для этого нужно:

  1. Снять крышку с двигателя.
  2. Найти одну из секций и посмотреть, сколько места она занимает по окружности самого круга. Например, если катушка заняла половину круга – это 180 градусов, то двигатель идет на 3000 оборотов в минуту.
  3. Если в окружности вмещается три секции на 120 градусов, то это двигатель на 1500 оборотов в минуту.
  4. Если в катушке вмещается 4 секции на 90 градусов, то двигатель на 3000 оборотов в минуту.

Ротор

Вращается внутри самого статора (выше описывали, что он представляет собой). Ротор – элемент электрического двигателя. Его вал соединен с деталями агрегаторов. Если говорить о массивном роторе – это цельный стальной цилиндр, который помещается во внутрь статора с не присоединенным к его поверхности сердечником (также выше описывали что такое сердечник).

Также бывают еще разновидности ротора:

  • фазный (уложен в пазы сердечника обмоткой и соединен по схеме «звезда»),
  • короткозамкнутый (залитый в поверхность сердечника, замкнут с торцов при помощи двух высокопроводящих медных колец).

Устройство короткозамкнутого ротора

Такая обмотка зачастую называется у профессионалов «беличьим колесом» по причине того, что его внешняя конструкция достаточно схожа с ним. Состоит из аллюминевых стержней, торцов с двумя кольцами замкнутых накоротко. Такие стержни вставлены, как правило, в пазы сердечника самого ротора.

Как сделан фазный ротор

Фазный ротор представляет собой двигатель, который поддается регулировке при помощи добавления в цепь ротора так называемых добавочных сопротивлений. Используются такого плана двигатели во время пуска с нагрузкой на валу. В свою очередь, увеличение сопротивления в цепи ротора предоставляет возможность увеличить пусковой момент.

Схемы подключения

Провода трехфазного двигателя подключаются либо по схеме треугольника, либо по звезде. При этом для последнего напряжение должно быть выше. Также перед установкой обмотки нужно определить момент на валу в моторе. Стоит обратить внимание на тот момент, что АДКР, подсоединенный различными методами к одной и той же цепи, требует разной мощности. Поэтому нельзя подключать двигатель, в котором предполагается использование только схемы треугольника, с принципом треугольника.

Иногда с целью снижения пускового тока люди коммутируют на этапе пуска контакты звезды в треугольник, но в таком случае падает и пусковой момент.

А для подсоединения трехфазного мотора к однофазной электросети профессионалы применяют разные фазосдвигающие детали, например конденсатор и резистор.

Рекомендуем к просмотру:

  • Вопрос: в доме нагревается провод от розетки, что делать?
  • Что нужно знать о классе точности измерительного прибора?
  • Вопрос: Автоматические выключатели на входе в…
  • Провод пв 3: технические характеристики, что…
  • Электромагнитное реле, что это такое, какой принцип…
  • Что важно знать о беспроводной зарядке простыми…
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector