Что обозначает q2 в формуле кпд теплового двигателя
Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.
Получите невероятные возможности
Конспект урока «КПД теплового двигателя»
На прошлых уроках мы познакомились с явлением превращения внутренней энергии в механическую на примере тепловых машин, в частности двигателя внутреннего сгорания и паровой турбины.
Однако не следует думать, что вся энергия, передаваемая нагревателю рабочим телом, уходит на совершение полезной работы. В тепловом двигателе превращается в механическую энергию только часть энергии, которую рабочее тело получает от нагревателя. Часть энергии передаётся холодильнику, а ещё часть энергии идёт на совершение работы против сил сопротивления.
Если обозначить количество теплоты, полученное рабочим телом от нагревателя Q1, а количество теплоты, отданное холодильнику — Q2, то работа, совершённая двигателем, будет равна: A = Q1 – Q2.
Отношение совершённой двигателем работы к количеству теплоты, полученному им от нагревателя называют коэффициентом полезного действия теплового двигателя (КПД):
Коэффициент полезного действия показывает, какая часть энергии, полученная от нагревателя, пошла на совершение работы.
Поскольку количество теплоты, отданное нагревателем, всегда больше количества теплоты, которое получил холодильник, то очевидно, что коэффициент полезного действия не может быть больше единицы. Поэтому его часто выражают в процентах.
Учёные и инженеры многое сделали для повышения эффективности тепловых двигателей. Так, например, коэффициент полезного действия первых паровых машин составлял всего около 1%, а КПД современных тепловых двигателей составляет от 20% до 40%. Таков же примерно и КПД паровых турбин на тепловых электростанциях.
Из формулы следует, что для повышения коэффициента полезного действия теплового двигателя необходимо увеличить количество теплоты, которое он получает от нагревателя, и уменьшить количество теплоты, отдаваемое холодильнику.
Для большего понимания рассмотрим решение следующей задачи. В топке котла паровой турбины расходуется 350 г дизельного топлива на 1 кВт ∙ ч энергии. Вычислите КПД турбины.
Как вы могли заметить, в тепловых двигателях происходит передача некоторого количества теплоты от нагревателя холодильнику и при этом совершается работа. Но существуют такие тепловые машины, в которых осуществляется обратный процесс, то есть теплота передаётся от холодильника нагревателю. Работа в этом случае совершается внешними силами. Такие тепловые машины называют холодильными машинами или просто холодильниками. Первые холодильные установки были разработаны в тысяча восемьсот семьдесят четвёртом году К. Линде.
Очевидно, что для совершения внешними силами работы над рабочим телом необходимы затраты энергии. Так при работе бытового холодильника затрачивается электрическая энергия.
Расчёты КПД котла
Как посчитать тепловую мощность
Формулу для расчёта тепловой мощности в гКал/час можно представить в виде:
Q = (T1 — T2) * 40(м 3 /час) / 1000, где T1 – Т2 – разность температур в градусах Цельсия.
Таким образом, для того чтобы посчитать мощность, которую выдаёт котельная, необходимо расход воды умножить на разность температур (перепад между «подачей» и «обраткой») и разделить на 1000. У Вас получится мощность в гигакаллориях (ГКал).
- Температура воды на «подаче» (из котельной в тепловую сеть) – 55 °С
- Температура воды на «обратке» (из тепловой сети в котельную) – 43 °С
- Расход сетевой воды – 120 м 3 /час (по насосам)
- (55 — 43) * 120 / 1000 = 1.44 ГКал. * 1.16 = 1.67 МВт
- Температура воды на входе в котёл – 43 °С
- Температура на выходе из котла – 51 °С
- Расход воды в котле – 40 м 3 /час
- (51 — 43) * 40 / 1000 = 0.32 ГКал * 1.16 = 0.37 МВт
Как посчитать КПД котла.
Формулу для расчёта КПД котла можно представить в виде:
Для того чтобы посчитать КПД котла необходимо температуру уходящих газов котла (измеряется термометром на газоходе котла) разделить на 15 ( с понижением температуры уходящих газов на 12-15С, потери теплоты уменьшаются на 1%), прибавить 2 (потери с химическим недожогом в слоевой топке 0,5-3%), прибавить 3 (потери с механическим недожогом в слоевой топке 1-5%), прибавить 2 (сумма остальных потерь). Полученное значение — ориентировочная величина потерь КПД в процентах, вне зависимости от вида топлива и мощности котла.
- Температура уходящих газов котла – 320 °C
- 320 / 15 + 2 + 3 + 2 = 29,3% — суммарные потери КПД (q2…q6)
- 100 – 29,3 = 70,1% — КПД котла
Из чего складываются потери КПД котла
Потери тепла с уходящими газами – q2 – составляют самую большую величину тепловых потерь котла. В современном котле величина потерь – q2 – находится в пределах 10 – 12%, при работе котла на номинальной нагрузке.
Потери тепла с химическим недожогом – q3 – возникает из-за неполного сгорания летучих компонентов топлива в топке котла. Причинами появления химического недожога могут быть: плохое смесеобразование, общий недостаток воздуха, низкая температура в топочном объёме котла, особенно в зоне догорания(верхняя часть топочного объёма). При достаточном коэффициенте избытка воздуха и хорошем смесеобразовании, химический недожог – зависит от теплонапряжения в топочном объёме (объём топки / мощность котла). В современном котле со слоевой топкой, при значениях теплонапряжения – qv = 0.23 — 0.45 МВт/м3, химический недожог составляет 0.5 – 2%, при увеличении qv (с 0.45 до 0.7), химический недожог резко возрастает и достигает 5%.
Потери тепла с механическим недожогом – q4 – сумма потерь теплоты с уносом, шлаком и провалом. Для слоевых топок величина потерь с уносом зависит от теплонапряжения(читай выдаваемая мощность) в топочном объёме (МВт) отнесённого к площади зеркала горения (qv / площадь решётки = qr ). С увеличением qr (т.е. с форсировкой котла), резко увеличивается доля несгоревшего топлива уносимого с продуктами сгорания (потери с уносом). Так, с увеличением qr с 0.93 до 1.63 (в 1.7 раза) величина потерь с уносом возрастает с 3 до 21% (в 7 раз). Потери теплоты со шлаком, возрастают, с увеличением зольности топлива и ростом теплонапряжения. Потери теплоты с провалом зависят от спекаемости топлива, содержания в топлива мелочи и от конструкции колосниковой решётки. При использовании охлаждаемой уголковой решётки потери теплоты с провалом не превышают 0.5%. В современном котле со слоевой топкой потери тепла с механическим недожогом – q4 — составляют 1-5%.
Потери тепла от наружного охлаждения – q5 – наблюдаются в связи с тем, что температура наружной поверхности котла всегда выше температуры окружающей среды. Котёл в лёгкой обмуровке имеет величину потерь – q5 – в пределах 0.5%
Прочие потери тепла – q6 – сумма потерь с физической теплотой шлака, на охлаждение панелей и балок, не включённых в циркуляционную систему котла – как правило, не превышают 0.5-2%
Как увеличить КПД котла
Очевидный способ увеличения КПД – снижение потерь с теплом уходящих газов (q2).
Рассмотрим котёл №1 и котёл №2, номинальной мощностью 0.5 ГКал/час каждый, топливо уголь (5000кКал), имеющих разную температуру уходящих газов:
- Температура уходящих газов котла №1 – 380 °С, котла №2 – 190 °С
- Расход сетевой воды на каждом из котле №1,2 – 20 м 3 /час.
- Перепад температур на входе / выходе воды из котла №1,2 – 25 °С.
Котёл №1 – Вычисляем:
- Мощность(ГКал/ч) 20 * 25 / 1000 = 0.5 ГКал/ч.
- Потери КПД (%) 380 / 15 + 2 + 3 + 2 = 32.3% (q2…q6)
- КПД котла(%) 100 – 32,3 = 67.7%
- Расход топлива (кг/ч) 0.5 / (5000*67.7) * 108 = 147,7
Котёл №2 – Вычисляем:
- Мощность(ГКал/ч) 20 * 25 / 1000 = 0.5 ГКал/ч.
- Потери КПД (%) 190 / 15 + 2 + 3 + 2 = 19.6% (q2…q6)
- КПД котла(%) 100 – 19,6 = 80.4%
- Расход топлива (кг/ч) 0.5 / (5000*80.4)* 108 = 120
Сравнивая КПД котлов и расход топлива, делаем вывод:
- Снижение температуры уходящих газов котла №1 с 380 до 190, приведёт к увеличению его КПД на 12.7%, и сокращению расхода угля на 18.7%.
- Один из вариантов снижения температуры уходящих газов — установка экономайзера.
Физический смысл
Вспомним, как электрический ток протекает по металлическому проводнику. Как только электрическая цепь замкнётся, то под действием ЭДС движение свободных электронов упорядочивается, и они устремляются к положительному полюсу источника питания. Однако на их пути встречаются стройные ряды кристаллических решёток, атомы которых создают препятствия упорядоченному движению, то есть оказывают сопротивление.
На преодоление сопротивления уходит часть энергии движущихся электронов. В соответствии с фундаментальным законом сохранения энергии, она не может бесследно исчезнуть. Она-то и превращается в тепло, вызывающее нагревание проводника. Накапливаемая тепловая энергия излучается в окружающее пространство или нагревает другие предметы, соприкасающиеся с проводником.
На рисунке 2 изображёна схема опыта, демонстрирующего закон теплового действия тока, разогревающего участок провода в электрической цепи.
Рис. 2. Тепловое действие тока
Явление нагревания проводников было известно практически с момента получения электротока, но исследователи не могли тогда объяснить его природу, и тем более, предложить способ оценки количества выделяемого тепла. Эту проблему решает закон Джоуля-Ленца, которым мы пользуемся по сегодняшний день.
Практическая польза закона Джоуля-Ленца
При сильном нагревании можно наблюдать излучение видимого спектра света, что происходит, например, в лампочке накаливания. Слабо нагретые тела тоже излучают тепловую энергию, но в диапазоне инфракрасного излучения, которого мы не видим, но можем ощутить своими тепловыми рецепторами.
Допускать сильное нагревание проводников нельзя, так как чрезмерная температура разрушает структуру металла, проще говоря – плавит его. Это может привести к выводу из строя электрооборудования, а также стать причиной пожара. Для того, чтобы не допустить критических параметров нагревания необходимо делать расчёты тепловых элементов, пользуясь формулами, описывающими закон Джоуля-Ленца.
Проанализировав выражение U 2 /R убеждаемся, что когда сопротивление стремится к нулю, то количество выделенного тепла стремится к бесконечности. Такая ситуация возникает при коротких замыканиях. В это основная опасность КЗ.
В борьбе с короткими замыканиями используют:
- автоматические выключатели:
- электронные защитные блоки;
- плавкие предохранители;
- другие защитные устройства.
Расчет в Excel прикладной задачи.
В жизни бывает часто необходимо сделать быстрый оценочный расчет, чтобы понять – имеет ли смысл продолжать изучение темы, делая проект и развернутые точные трудоемкие расчеты. Сделав за несколько минут расчет даже с точностью ±30%, можно принять важное управленческое решение, которое будет в 100 раз более дешевым и в 1000 раз более оперативным и в итоге в 100000 раз более эффективным, чем выполнение точного расчета в течение недели, а то и месяца, группой дорогостоящих специалистов…
Условия задачи:
В помещение цеха подготовки металлопроката размерами 24м х 15м х 7м завозим со склада на улице металлопрокат в количестве 3т. На металлопрокате есть лед общей массой 20кг. На улице -37˚С. Какое количество теплоты необходимо, чтобы нагреть металл до +18˚С; нагреть лед, растопить его и нагреть воду до +18˚С; нагреть весь объем воздуха в помещении, если предположить, что до этого отопление было полностью отключено? Какую мощность должна иметь система отопления, если все вышесказанное необходимо выполнить за 1час? (Очень жесткие и почти не реальные условия – особенно касающиеся воздуха!)
Расчет выполним в программе MS Excel или в программе OOo Calc.
С цветовым форматированием ячеек и шрифтов ознакомьтесь на странице «О блоге».
Исходные данные:
1. Названия веществ пишем:
в ячейку D3: Сталь
в ячейку E3: Лед
в ячейку F3: Лед/вода
в ячейку G3: Вода
в ячейку G3: Воздух
2. Названия процессов заносим:
в ячейки D4, E4, G4, G4: нагрев
в ячейку F4: таяние
3. Удельную теплоемкость веществ c в Дж/(кг*К) пишем для стали, льда, воды и воздуха соответственно
в ячейку D5: 460
в ячейку E5: 2110
в ячейку G5: 4190
в ячейку H5: 1005
4. Удельную теплоту плавления льда λ в Дж/кг вписываем
в ячейку F6: 330000
5. Массу веществ m в кг вписываем соответственно для стали и льда
в ячейку D7: 3000
в ячейку E7: 20
Так как при превращении льда в воду масса не изменяется, то
в ячейках F7 и G7: =E7 =20
Массу воздуха находим произведением объема помещения на удельный вес
в ячейке H7: =24*15*7*1,23 =3100
6. Время процессов t в мин пишем только один раз для стали
в ячейку D8: 60
Значения времени для нагрева льда, его плавления и нагрева получившейся воды рассчитываются из условия, что все эти три процесса должны уложиться в сумме за такое же время, какое отведено на нагрев металла. Считываем соответственно
в ячейке E8: =E12/(($E$12+$F$12+$G$12)/D8) =9,7
в ячейке F8: =F12/(($E$12+$F$12+$G$12)/D8) =41,0
в ячейке G8: =G12/(($E$12+$F$12+$G$12)/D8) =9,4
Воздух также должен прогреться за это же самое отведенное время, читаем
в ячейке H8: =D8 =60,0
7. Начальную температуру всех веществ T1 в ˚C заносим
в ячейку D9: -37
в ячейку E9: -37
в ячейку F9:
в ячейку G9:
в ячейку H9: -37
8. Конечную температуру всех веществ T2 в ˚C заносим
в ячейку D10: 18
в ячейку E10:
в ячейку F10:
в ячейку G10: 18
в ячейку H10: 18
Думаю, вопросов по п.7 и п.8 быть недолжно.
Результаты расчетов:
9. Количество теплоты Q в КДж, необходимое для каждого из процессов рассчитываем
для нагрева стали в ячейке D12: =D7*D5*(D10-D9)/1000 =75900
для нагрева льда в ячейке E12: =E7*E5*(E10-E9)/1000 = 1561
для плавления льда в ячейке F12: =F7*F6/1000 = 6600
для нагрева воды в ячейке G12: =G7*G5*(G10-G9)/1000 = 1508
для нагрева воздуха в ячейке H12: =H7*H5*(H10-H9)/1000 = 171330
Общее количество необходимой для всех процессов тепловой энергии считываем
в объединенной ячейке D13E13F13G13H13: =СУММ(D12:H12) = 256900
В ячейках D14, E14, F14, G14, H14, и объединенной ячейке D15E15F15G15H15 количество теплоты приведено в дугой единице измерения – в ГКал (в гигакалориях).
10. Тепловая мощность N в КВт, необходимая для каждого из процессов рассчитывается
для нагрева стали в ячейке D16: =D12/(D8*60) =21,083
для нагрева льда в ячейке E16: =E12/(E8*60) = 2,686
для плавления льда в ячейке F16: =F12/(F8*60) = 2,686
для нагрева воды в ячейке G16: =G12/(G8*60) = 2,686
для нагрева воздуха в ячейке H16: =H12/(H8*60) = 47,592
Суммарная тепловая мощность необходимая для выполнения всех процессов за время t рассчитывается
в объединенной ячейке D17E17F17G17H17: =D13/(D8*60) = 71,361
В ячейках D18, E18, F18, G18, H18, и объединенной ячейке D19E19F19G19H19 тепловая мощность приведена в дугой единице измерения – в Гкал/час.
На этом расчет в Excel завершен.
Выводы:
Обратите внимание, что для нагрева воздуха необходимо более чем в два раза больше затратить энергии, чем для нагрева такой же массы стали.
При нагреве воды затраты энергии в два раза больше, чем при нагреве льда. Процесс плавления многократно больше потребляет энергии, чем процесс нагрева (при небольшой разности температур).
Нагрев воды в десять раз затрачивает больше тепловой энергии, чем нагрев стали и в четыре раза больше, чем нагрев воздуха.
Для получения информации о выходе новых статей и для скачивания рабочих файлов программ прошу вас подписаться на анонсы в окне, расположенном в конце статьи или в окне вверху страницы.
После ввода адреса своей электронной почты и нажатия на кнопку «Получать анонсы статей» НЕ ЗАБУДЬТЕ ПОДТВЕРДИТЬ ПОДПИСКУ кликом по ссылке в письме, которое тут же придет к вам на указанную почту (иногда — в папку «Спам»)!
Мы вспомнили понятия «количество теплоты» и «тепловая мощность», рассмотрели фундаментальные формулы теплопередачи, разобрали практический пример. Надеюсь, что мой язык был прост, понятен и интересен.
Жду вопросы и комментарии на статью!
Прошу УВАЖАЮЩИХ труд автора скачать файл ПОСЛЕ ПОДПИСКИ на анонсы статей.
Ссылка на скачивание файла: raschet-teplovoy-moshchnosti (xls 19,5KB).
Как увеличить КПД газового котла
Повысить эффективность сжигания топлива вмешательством в техническое устройство котла практически невозможно, тот же слой теплоизоляции установить не получится в виду банальной непредусмотренности производителем места под него. Кроме того, делать это своими руками запрещено. Тем не менее есть способы увеличить КПД газового котла, особенно, если это несовершенная модель старого образца:
- Готовый экономайзер для дымохода – заменяет определенный отрезок дымохода и предназначен для аккумуляции тепла отходящих через дымоход газов (некая имитация конденсационных котлов). Однако нужно точно посчитать параметры экономайзера и требования к дымоходу, чтобы сохранить необходимую тягу и предотвратить обратную тягу, например, при сильном ветре. Цена вопроса – 1 700-2 500 руб.
Сэндвич-сетка экономайзер для трубы дымохода.
- Самодельный экономайзер – практически идентичный с вышеописанными готовыми изделиями. Как сделать эффективный экономайзер мы уже описывали в одной из предыдущих статей .
- Чистка котла и промывка теплообменника – это регулярные меры обслуживания, бессмысленные для новых котлоагрегатов, но крайне эффективные для эксплуатируемых хотя бы несколько сезонов. Дело в том, что во время эксплуатации внутри теплообменника образуются накипь и прочие солевые отложения, забиваются внешние ребра теплообменника, горелки и запальник. Все это приводит к увеличению расхода газа, снижению теплопроизводительности, соответственно, снижению КПД (часто до 20-30%). Как и насколько часто необходимо чистить газовый котел мы также уже разбирали ранее .
- Газовый фильтр – устанавливается он перед запорной арматурой газовой магистрали и предназначен для очистки газа от мусора и примесей, иногда встречающихся в составе. Это не только способствует снижению сажеобразования, но и, повышая качество топлива, незначительно снижает теплопотери при недожоге.
Остальные же методы заключаются в правильных пуско-наладочных работах, которые проводятся единожды, при первом запуске котла, исключительно специалистами. При правильной изначальной настройке обеспечивается КПД, гарантируемый производителем. Важно понимать, что повысить этот показатель вмешательством в техническое устройство самого котла невозможно, и уж тем более – не безопасно.