Характеристики и принцип действия трехфазного асинхронного двигателя - АвтоКлуб Toyota
Toyota-navi.ru

АвтоКлуб Toyota
9 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Характеристики и принцип действия трехфазного асинхронного двигателя

Характеристики и принцип действия трехфазного асинхронного двигателя

Асинхронный (индукционный) двигатель – механизм, превращающий силу переменного тока в механическую. Под асинхронным подразумевают, что скорость движения магнитной силы статора выше аналогичной величины оборотов ротора.

Для того, чтобы получше представлять, что такое асинхронный двигатель и принцип действия трехфазного асинхронного двигателя, где он используется и как работает, необходимо разобраться в его составных частях и деталях, исследовать технические характеристики. Кроме того, не лишним будет понять, как происходит преобразование силы во время пуска и где используется асинхронный двигатель на практике.

В сегодняшней статье мы попробуем ответить на самые интересные вопросы, связанные с асинхронными двигателями, разобраться в том, что такое устройство однофазного асинхронного двигателя, рассмотрим принципы работы, а также плюсы и минусы данного типа устройств.

Принцип работы

Движущей силой в асинхронной машине является магнитное поле вращения. Как это работает, можно рассмотреть на следующем примере. При вращении П-образного магнита, между полюсами которого расположен свободно вращающийся металлический цилиндр, поле магнита, вращаясь, будет пересекать ротор посредством своих силовых линий. Внутри ротора при этом наведутся токи Фуко и магнитное поле. Эти поля, взаимодействуя друг с другом, начнут крутить ротор. Магнит и, создаваемое им поле, будут вращаться синхронно, а обороты цилиндра отставать (асинхронность). Отсюда и пошло наименование асинхронной машины. Запаздывание вращения ротора по отношению к магнитному полю, есть скольжение. В данном примере источником циркуляции магнитного поля и ротора является приводимый во вращение постоянный магнит. Понятно, что это еще не есть электродвигатель, в котором циркулирующее магнитное поле должно создаваться электрическим током, и приводить во вращение ротор. Эту задачу удалось решить М. О. Доливо-Добровольскому, который для этого воспользовался трехфазным током. Сердечник кольцевого вида из железа (статор) имеет полюса, расположенные по кругу через 120о, на которые намотаны 3 обмотки сети 3-х фазного тока. В сердечнике расположен цилиндр из металла – прообраз ротора электромотора. Соединив обмотки в «звезду» или «треугольник», и подав на них 3-х фазный ток, общему магнитному полю, созданному полюсами, придается вращение. За один цикл изменения тока, протекающего в обмотках, магнитный поток также совершит поворот на 360о и инициирует вращение цилиндра, а это и есть асинхронная машина.Если вторую обмотку заменить третьей, то произойдет реверс магнитного поля. То же самое будет, если заменить ток второй фазы на третью. Это значит, реверс магнитного потока возможен, если переключить 2 любые фазы. Таково устройство асинхронной машины, статор которой имеет 3 обмотки. В ней обороты 2-х полюсного магнитного поля совпадают с количеством циклов изменения тока за равное время.Если статор содержит по кругу 6 обмоток, то инициируется 4-х полюсное магнитное поле, если девять – 6-ти полюсное вращающееся поле. В случае частоты 3-х фазного тока 50 Герц, обороты поля будут при: — 2-х полюсном статоре – 50 об/сек; — 4-х полюсном – 25 об/сек; — 6-ти полюсном – 17 об/сек. Ротор машины будет немного отставать по отношению к магнитному потоку. В случае холостого хода изделия несовпадение составит 3%, под нагрузкой – 6%.

Читайте 7 самых мощных тракторов России

Устройство двигателя

Конечно, показанное выше устройство назвать электродвигателем никак нельзя, потому что для примера был использован магнит, которого в моторе просто нет. Поэтому необходимо создать такую конструкцию, в которой электрический ток создавал бы это самое магнитное поле. К тому же оно должно еще и вращаться. Русскому ученому это оказалось под силу с помощью трехфазного переменного тока.

Поэтому в конструкции трехфазного асинхронного двигателя установлены три обмотки, расположенные относительно друг друга под углом в 120º. Каждая обмотка подсоединена к фазному контуру трехфазной сети переменного тока. Обмотки закрепляются к статору, который собой представляет металлический сердечник в виде полого корпуса. Они же закрепляются к полюсам сердечника.

Внимание! У каждой обмотки два свободных конца. Один соединяется с фазой сети, второй с двумя другими концами двух других обмоток, то есть, в единый контур.

Внутри полого сердечника на подшипниках закрепляется ротор. По сути, это тот же стержень-цилиндр. Ниже показана схема подключения обмоток и расположение ротора.

Как только электрический ток начинает подаваться на обмотки, образуется вращающееся магнитное поле, которое воздействует на ротор, заставляя его вращаться тоже.

Как работает

Чтобы понять принцип действия трехфазного асинхронного двигателя, необходимо рассмотреть график его работы. Чтобы облегчить данную задачу, предлагаем рассмотреть схему, расположенную ниже.

Читать еще:  Что будет если меняя масло не промыть двигатель

  • Итак, позиция «А». В ней на первом полюсе фаза равна нулю, второй полюс является северным, то есть, отрицательным, в третьей фазе положительный заряд. Поэтому ток движется по стрелкам, указанным на рисунке. Тот, кто забыл школьную программу физики, напоминаем, что движение магнитного поля действует по правилу правой руки. Значит, вращение его будет направлено от севера к югу, то есть, от второй катушки (обмотки) к третьей.
  • Позиция «Б». Теперь ноль расположен на второй обмотке, на первой юг (плюс), на третьей север (минус). То есть, магнитный поток будет теперь направлен от катушки №3 на катушку №1. Получается так, что полюсы сместились на 120º.
  • В позициях «В» и «Г» произошли точно такие же сдвиги полюсов на 120º.

Смена полярности создает вращение магнитного потока, который в свою очередь увлекает за собой ротор. Последний начинает вращаться. Как было сказано выше, из энергии электрической получается энергия вращения (механическая).

Внимание! Если поменять местами вторую и третью обмотку, то вращение электродвигателя начнется в противоположную сторону. Конечно, сами обмотки не переставляются, а просто производится смена подключения к разным фазам сети.

Нами была рассмотрена конструкция электродвигателя асинхронного трехфазного с тремя обмотками на статоре, в котором используется двухполюсная схема магнитного поля. Число его оборотов вращения равна числу колебаний электрического тока в минуту. Если в сети переменного тока число колебания в секунду равно 50 Гц, то за минуту это значение станет 3000 (об/мин).

Но в статор можно заложить не три обмотки. К примеру, можно установить шесть или десять. При этом магнитное поле станет четырехполюсным и шестиполюсным соответственно. При этом измениться и скорость вращения ротора. В первом случае она будет равна: (50X60)/2=1500 об/мин. Во втором: (50X60)/3=1000 об/мин.

Выше нами уже упоминалось, что существует определенное отставание вращения ротора от вращения магнитного поля. Правда, это значение незначительно. К примеру, в холостом режиме работы данный показатель будет всего лишь 3%, при действующих нагрузках 5-7%. Даже 7% – значение небольшое, что и является одним из достоинств асинхронного двигателя.

Как использовать

К сожалению, не во всех частных домах есть трехфазное напряжение. Поэтому подключение трехфазного асинхронного двигателя к однофазной сети производится через конденсаторы определенной емкости. Обычно расчет ведется в соответствии: на 1 кВт мощности 70 мкФ емкости. Но есть в этом деле еще одна проблема – невозможность регулировать скорость вращения ротора. Поэтому специалисты рекомендуют подключить к мотору регулятор частоты вращения трехфазных асинхронных двигателей.

Подключение трехфазного двигателя к однофазной сети

  • Во-первых, установив его, отпадает необходимость устанавливать конденсаторы.
  • Во-вторых, с помощью данного устройства выравнивается мощность электродвигателя до номинальной.
  • В-третьих, можно регулировать частоту вращения, а также повышать ее больше номинала.
  • В-четвертых, можно регулировать пусковой момент.

Эти устройства сегодня продаются в специализированных магазинах, но нет проблем их сделать и своими руками.

Ротор

По конструкции ротора электродвигатели асинхронные делятся на две группы:

  1. С фазным ротором.
  2. Короткозамкнутым.

Первый вариант – это двигатели с большой мощностью, которым необходим большой пусковой момент. В конструкции их ротора установлены контактные кольца. Второй вариант – это конструкция, в пазы которой заложены медные стержни. Это типичные электродвигатели, простые и дешевые. Но у них есть пара недостатков: большой пусковой ток и слабое усилие при начале вращения.

Принцип работы

Принцип работы двух и многофазных двигателей был разработан Николой Теслой и запатентован. Доливо-Добровольский усовершенствовал конструкцию электродвигателя и предложил использовать три фазы вместо двух, используемых Н. Теслой.

Совокупность моментов созданных отдельными проводниками образует результирующий вращающий момент двигателя, возникает электромагнитная пара сил, которая стремится повернуть ротор в направлении движения электромагнитного поля статора.

Ротор приходит во вращение приобретает определенную скорость, магнитное поле и ротор вращаются с разными скоростями или асинхронно. Применительно к асинхронным двигателям, скорость вращения ротора всегда меньше скорости вращения магнитного поля статора.

Вращающий момент двигателя создается силами взаимодействия магнитного поля и токов, индуцируемых им в роторе, а сила этих токов определяется относительной частотой вращения поля по отношению к ротору, который сам вращается в ту же сторону, что и поле.

Поэтому, если бы ротор вращался с той же частотой, что и поле, то никакого относительного движения их не было бы. Тогда ротор находился бы в покое относительно поля и в нем не возникала бы никакая индуцированная э. д. с., то есть в роторе не было бы тока и не могли бы возникнуть, силы, приводящие его во вращение. Отсюда ясно, что двигатель описываемого типа может работать только при частоте вращения ротора, несколько отличающейся от частоты вращения поля, то есть от частоты тока.

Поэтому такие двигатели в технике принято называть «асинхронными» (от греческого слова «синхронос» – совпадающий или согласованный во времени, частица «а» означает отрицание). Если машины, приводимые в действие двигателем, требуют иной частоты вращения, чем этот двигатель дает, то предпочитают применять зубчатые или ременные передачи с различными передаточными числами.

Само собой разумеется, что при возрастании нагрузки двигателя, то есть отдаваемой им механической мощности, должен возрастать не только ток в роторе, но и ток в статоре для того, чтобы двигатель мог поглощать из сети соответствующую электрическую мощность. Поэтому при работе с двигателями необходимо твердо соблюдать следующие правила:

  1. Необходимо всегда подбирать двигатель такой мощности, какую фактически требует приводимая им в действие машина.
  2. Если нагрузка двигателя не достигает 40 % нормальной, а обмотки статора включены треугольником, то целесообразно переключить их на звезду.
  3. Для того чтобы изменить направление вращения вала двигателя на обратное, необходимо поменять местами два линейных провода, присоединенных к двигателю. Это легко осуществить при помощи двухполюсного переключателя.
Читать еще:  Чем промывать двигатель при замене масла на ланосе

Это осуществляется автоматически вследствие того, что ток в роторе также создает в окружающем пространстве свое магнитное поле, воздействующее на обмотки статора и индуцирующее в них некоторую э. д. с. Связь между магнитным потоком ротора и статора, или, как говорят, «реакция якоря», обусловливает изменения тока в статоре и обеспечивает согласование электрической мощности, отбираемой из сети, с механической мощностью, отдаваемой двигателем.

В асинхронных двигателях с большим моментом инерции необходимо увеличение вращающего момента с одновременным ограничением пусковых токов – для этих целей применяют двигатели с фазным ротором. Для увеличения начального пускового момента в схему ротора включают трехфазный реостат.

В начале пуска он введен полностью, пусковой ток при этом уменьшается. При работе реостат полностью выведен. Для пуска асинхронных двигателей с короткозамкнутым ротором применяют три схемы: с реактивной катушкой, с автотрансформатором и с переключением со звезды на треугольник. Рубильник последовательно соединяет реактивную катушку и статор двигателя.

Когда скорость ротора приблизится к номинальной, замыкается рубильник, он закорачивает катушка и статор переключаются на полное напряжение сети. При автотрансформаторном пуске по мере разгона двигателя, автотрансформатор переводится в рабочее положение, в котором на статор подается полное напряжение сети. Пуск асинхронного двигателя с предварительным включением обмотки статора звездой и последующим переключением ее на треугольник дает трехкратное уменьшение тока.

Для предупреждения этой опасности следует при напряжениях свыше 150 В относительно Земли заземлять станины и кожухи электрических машин и трансформаторов, то есть надежно соединять их металлическими проводами или стержнями с Землей. Это выполняется по специальным правилам, которые необходимо строго соблюдать во избежание несчастных случаев.

Трёхфазный двигатель приспособлен к трёхфазной сети, а к однофазной сети лучше подходит двухфазный двигатель со сдвигом фазы во второй обмотке либо через конденсатор (конденсаторные двигатели), либо через индуктивность.

Отличия подключения трехфазного асинхронного двигателя с одинарным или двойным напряжением иногда приводят к выходу из строя мотора – если не обратить внимание на то, какое напряжение верхнее, а какое нижнее, можно его подключить неправильно и он сгорит.

Когда мы включаем в сеть ненагруженный двигатель, то в первые моменты равно или близко к нулю, частота вращения поля относительно ротора велика и индуцированная в роторе э. д. с. соответственно также велика – она раз в 20 превосходит ту э. д. с., которая возникает в роторе при работе двигателя с нормальной мощностью. Ток в роторе при этом тоже значительно превосходит нормальный.

Возможно, вам будет интересно также почитать про малоизвестные факты о двигателях постоянного тока в другой нашей статье.

Принцип действия асинхронного двигателя

Уже говорилось, что трехфазная обмотка статора необходима для намагничивания или образования вращающегося магнитного поля. Нетрудно догадаться, что законом электромагнитной индукции управляется асинхронный двигатель. Принцип работы его заключается в следующем: вращающееся статорное магнитное поле пересекает роторную короткозамкнутую обмотку, что вызывает электродвижущую силу и протекание переменного тока. Этот ток образует свое магнитное поле, а взаимодействуя со статорным вращающимся полем, начинает роторное вращение. Еще в восемнадцатом веке был продемонстрирован этот принцип посредством проведения простого опыта: подковообразный магнит вращали с постоянной скоростью рядом с металлическим диском, который свободно был закреплен на оси. Диск начинал вращаться за магнитом, но с меньшей скоростью.

Читать еще:  Что будет если перелить масло в двигатель калина

Если знать закон элетромагнитной индукции, то явление становится понятным. Когда магнитные полюса движутся, то рядом с поверхностью диска под ними наводится электродвижущаяся сила. Из-за нее создаются токи, которые образуют магнитное дисковое поле.

Устройство

По определению «асинхронным» называют двигатель переменного тока, у которого ротор вращается медленнее чем магнитное поле статора, то есть несинхронно. Но это определение не слишком информативно. Чтобы его понять нужно разобраться как устроен этот двигатель.

Асинхронный двигатель, как и любой другой состоит из двух основных частей — ротор и статор. «Для чайников» в электрике расшифруем:

  • Статором называют неподвижную часть любого генератора или электродвигателя.
  • Ротором называют вращающуюся часть двигателя, которая и приводит в движение механизмы.

Статор состоит из корпуса, торцы которого закрываются подшипниковыми щитами, в которых установлены подшипники. В зависимости от назначения и мощности двигателя используют подшипники скольжения или качения. В корпусе расположен сердечник, на нём установлена обмотка. Её называют обмоткой статора.

Так как ток переменный, чтобы снизить потери из-за блуждающих токов (токи Фуко) сердечник статора набирают из тонких стальных пластин, изолированных друг от друга окалиной и скрепленных лаком. На обмотки статора подают питающее напряжение, ток протекающий в них называют током статора.

Количество обмоток зависит от числа питающих фаз и конструкции двигателя. Так у трёхфазного двигателя минимум три обмотки, соединённых по схеме звезды или треугольника. Их количество может быть больше, и оно влияет на скорость вращения вала, но об этом мы поговорим далее.

А вот с ротором дела обстоят интереснее, как уже было сказано он может быть или короткозамкнутым, или фазным.

Короткозамкнутый ротор — это набор металлических стержней (обычно алюминиевых или медных), на рисунке выше обозначены цифрой 2, впаянных или залитых в сердечник (1) замкнутых между собой кольцами (3). Такая конструкция напоминает колесо, в котором бегают одомашненные грызуны, отчего её часто называют «беличьей клеткой» или «беличьим колесом» и такое название не жаргонное, а вполне литературное. Для уменьшения высших гармоник ЭДС и пульсации магнитного поля, стержни укладывают не вдоль вала, а под определенным углом относительно оси вращения.

Фазный ротор отличается от предыдущего тем, что на нем уже есть три обмотки, как на статоре. Начала обмоток подключаются к кольцам, обычно медным, они напрессованы на вал двигателя. Позже мы кратко объясним зачем они нужны.

В обоих случаях, один из концов вала соединяют с приводимым в движение механизмом, он выполняется конической или цилиндрической формы с проточками или без, для установки фланца, шкива и других механических приводных деталей.

На «задней» части вала закрепляют крыльчатку, которая необходима для обдува и охлаждения, поверх крыльчатки на корпус надевается кожух. Таким образом холодный воздух направляется вдоль ребер асинхронного двигателя, если эта крыльчатка по какой-то причине не будет вращаться — он перегреется.

Конструкция первого асинхронного двигателя была разработана М.О. Доливо-Добровольским и запатентовал он её в 1889 г. Без особых изменений дожила до настоящего времени.

Однофазный асинхронный двигатель

Выше рассматривался трехфазный асинхронный двигатель, в однофазном асинхронном двигателе их две. Одна рабочая, вторая вспомогательная. Вспомогательная нужна для того, чтобы придать первоначальное вращение ротору. Потому может называться ещё пусковой или стартовой.

Однофазный асинхронный двигатель имеет две обмотки: рабочую и вспомогательную (стартовую или пусковую)

Когда в статоре включена одна обмотка, она создаёт два равных магнитных поля, вращающихся в разные стороны. Если ввести в это поле ротор, который уже имеет какое-то начальное вращение, магнитное поле будет поддерживать это вращение. Но как запустить ротор на старте? Как придать ему вращение, ведь от одной обмотки возникают два равноценных магнитных поля, направленные в разные стороны. Так что с их помощью заставить вращаться ротор невозможно. В простейшем варианте вращение задаётся вручную — механически. Затем вращение подхватывает поле.

Чтобы автоматизировать запуск однофазного асинхронного двигателя и сделана вспомогательная обмотка. Она сконструирована так, что подавляет одну из составляющих магнитного поля основной обмотки и усиливает вторую. Соответственно, одна из составляющих перевешивает, задавая вращение ротора. Затем стартовая обмотка отключается, вращение поддерживает основная.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector